
Hoare logic for higher order store
with simple foundations

Nathaniel Charlton

Department of Informatics, University of Sussex, Falmer, Brighton, United Kingdom

Abstract

We revisit the problem of providing a Hoare logic for a simple language for
higher order store programs, considered by Reus and Streicher (ICALP, 2005).
In a higher order store program, the procedures/commands of the program
are not fixed, but can be manipulated at runtime by the program itself; such
programs provide a foundation to study language features such as reflection,
dynamic loading and runtime code generation. We present progress in three
areas. Firstly, we present a new semantic model of the programming language,
using flat states rather than domains. This model is much simpler and leads to a
more powerful logic: unintuitive restrictions on proof rules are eliminated, non-
deterministic programs are handled, programs which perform syntactic equality
tests on commands can be reasoned about, and some convenient new proof
rules are validated. Secondly we explain and demonstrate with an example
that, contrary to what has been stated in the literature, such a proof system
does support proofs which are (in a specific sense) modular. Thirdly we extend
the programming language with an operator for runtime specialisation of code,
which is a simple form of runtime code generation. We provide new proof
rules for reasoning about this operator, including a new recursion rule. We
demonstrate these rules with an example.

Keywords: higher order store, Hoare logic, modular proof

1. Introduction

A programming language is said to feature higher order store when a pro-
gram’s commands or procedures are not fixed, but are instead part of the mu-
table state which the program itself manipulates at runtime. Higher order store
has been suggested [1, 2, 3, 4, 5, 6] as a conceptual tool to help us understand
various programming language features. These features include:

� general reference cells which can store functions, as found for example in
ML

Email address: billiejoecharlton@gmail.com (Nathaniel Charlton)

Preprint submitted to Elsevier February 17, 2012

� dynamic loading and unloading of code: even languages such as C allow
programs to dynamically load and unload shared library code

� dynamic software updating, in which a software program is upgraded to a
new version without shutting it down [7, 8]

� runtime code generation, in which routines optimised for specific inputs
are generated at runtime [9]

� method update in object-based languages such as Abadi and Cardelli’s
imperative object calculus [10]

In all these situations, the set of code or commands making up the program
changes at runtime.

Conventional Hoare logic [11, 12], however, does not account for higher order
store, because it makes an implicit assumption that the program is fixed and
immutable. To begin to address this shortcoming, Reus and Streicher [13] stud-
ied the problem of providing a Hoare logic for “arguably the simplest language
that uses higher-order store”. By working with a simple language the authors
could focus solely on the issues created by higher order store. This language
contained programs such as the following:

x := ‘run x’ ;
run x

(1) x := ‘n := 100 ; x := ‘n := n− 1’’ ;
run x ; run x

(2)

Program (1) constructs a non-terminating recursion: the command run x is writ-
ten into variable x, and then invoked using the run x command. This leads to the
code stored in x invoking itself endlessly. Program (1) should satisfy the Hoare
triple {true}−{false}. The fact that new recursions can be set up on-the-fly in
this way was observed by Landin [14] and is sometimes called recursion through
the store or tying the knot. In program (2) we store a self-modifying command
in x: when first run, this command sets n to 100 and then replaces itself with
the command n := n− 1. Program (2) should satisfy {true} − {n = 99}.

By developing a domain-theoretic model of the programming language, Reus
and Streicher were able to give a suitable assertion language and associated
Hoare logic rules. In particular, reasoning about recursion through the store is
supported.

In this paper we revisit the original problem studied by Reus and Streicher
[13], presenting new progress in three areas.

1. We give a more powerful logic and a simpler semantic model.

The domain-theoretic model used by Reus and Streicher is rather compli-
cated, and this has various undesireable consequences:

� Proving soundness of the logic requires an intricate domain-theoretic
argument; specifically, results by Pitts [15] concerning the existence
of invariant relations on recursively defined domains are needed.

2

� The domain theory leaks out and pollutes the logic, so that some
of the proof rules are restricted in that they can only be used with
assertions that are “downwards closed”. These restrictions are unin-
tuitive because they come from the semantics and do not correspond
to anything at the programming language level.

� Non-deterministic program statements cannot be added to the lan-
guage.

� Reasoning about programs which perform syntactic equality testing
on commands (which may be used as an optimisation) is not sup-
ported.

By using a simpler model based on flat states and operational semantics
we address all these issues and additionally validate some convenient new
proof rules.

2. We demonstrate that modular proofs are in fact supported.

It is stated in [13] that the given logic does not support modular proofs.
Contrary to this, we demonstrate with an example that one can indeed
carry out proofs which are modular (in a specific sense which we shall
make clear).

3. We add features for code specialisation at runtime.

We extend the programming language with a specialising quote operator.
This enables specialisation of code at runtime, which is a simple form of
runtime code generation. We provide new proof rules for reasoning about
runtime code specialisation, including a new recursion rule (µSets), and
demonstrate these rules with an example. The (µSets) rule is needed
because in the presence of runtime code specialisation there can be a
countably infinite range of commands which could be generated during
program execution.

The rest of this paper is structured as follows. Section 2 gives the syntax of
the programs, assertions and specifications we work with and sets out our new
semantic model for these. Section 3 presents proof rules extending those of [13],
explaining the improvements we make, and shows their soundness. Section 4
explains and demonstrates with an example that our a proof system supports
modular proofs. In Section 5 we introduce and justify further new proof rules
for reasoning about runtime code specialisation, which we apply to an exam-
ple program in Section 6. Section 7 puts our results into a broader context,
discussing related and future work. Section 8 concludes.

2. Programs, assertions and specifications

In this section we begin by giving the syntax of a programming language
for higher order store programs, and accompanying assertion and specification

3

expressions e ::= 0 | 1 | . . . | e1 + e2 | e1 = e2 | . . . | x | x | ‘C’ | ‘C’~v=~e

commands C ::= nop | x := e | C1;C2 | if e then C1 else C2 | run e | choose C1 C2

assertions P,Q ::= P1 ∧ P2 | ¬P | ∀v.P | e1 ≤ e2 | P(e+)

middle part of triple C ::= e | P(·, e1, . . . , ek)

(e, e1, . . . , ek must not contain free program variables)

specifications S ::= ∀~v. {P} C {Q}
| P (lone P must not contain free program variables)

specifications in context Π ::= S1, . . . , Sk ` S

Figure 1: Syntax of expressions, commands, assertions and specifications.

languages. We briefly describe Reus and Streicher’s semantic model for the
languages, before introducing our new, simpler model. The reader will see that
our model requires no complicated theory.

2.1. Syntax of programs, assertions and specifications

Fig. 1 gives the syntax of expressions e, commands C and assertions P .
Variables can be of two kinds: ordinary variables x, y, . . . ∈ Var, and auxil-
iary variables p, q, . . . ∈ AuxVar which may not appear in programs. Predicate
variables, in PVar, are typically named P,Q and so on.

The quote expression ‘C’ turns the command C into a value so it can be
stored in a variable, and run later. The specialising quote ‘C’~v=~e is similar,
but when evaluated replaces the variables ~v in C with the current values of the
expressions ~e. This feature allows programs to perform code specialisation at
runtime. The free variables of ‘C’~v=~e are exactly those appearing in ~e. (In fact
‘C’ is a special case of ‘C’~v=~e, where ~v is the empty list of variables; thus ‘C’ has
no free variables.) The difference between the ordinary and specialising quotes
is shown by the following two programs.

n := 10; x := ‘m := n’; n := 0; run x (3)

n := 10; x := ‘m := a’a=n; n := 0; run x (4)

Program (3) terminates with m = 0 whereas program (4) terminates with m =
10.

We write mod(C) for the set of program variables that are syntactically as-
signed to in the command C. (This need not coincide with the set of variables
which C actually changes. The assigment x := x changes no variables even
though mod(x := x) = {x}; conversely run x may change any variable, depend-
ing on the code stored in x, yet mod(run x) = ∅.) The specialising quote ‘C’~v=~e

only makes sense when mod(C) ∩ ~v = ∅. For example, ‘x := y’x=3 does not

4

make sense because replacing x by 3 in x := y leads to 3 := y, which is not a
syntactically well-formed command.

Using the available assertion language one can express the missing connec-
tives true, ∨, ∃, = and so on in the usual way.

Our setup features three extensions compared to that of [13]: the specialising
quote ‘C’~v=~e, predicates P in assertions and the non-deterministic choice state-
ment choose. Aside from these extensions, the only difference is that because
we will use a flat store model and encode commands as integers, we will not
need a type check τ?e and the typed comparison operators ≤τ become simply
≤.

Next we introduce specifications S and specifications in context Π, whose
syntax is also shown in Fig. 1. A specification is either a Hoare triple describ-
ing the behaviour of commands, or an assertion which mentions no program
variables. The latter form will be used to state properties of predicates P.
The specification form {P}P(·, e1, . . . , ek) {Q}, where a predicate P appears in
the middle part of the triple, is used to say that all commands C satisfying
P(C, e1, . . . , ek) satisfy the triple {P} · {Q}.

The specification in context S1, . . . , Sk ` S says informally that in any con-
text where specifications S1, . . . , Sk hold, specification S must hold as well.
Comma-separated sequences S1, . . . , Sk of specifications will often be called con-
texts and named Γ.

2.2. The existing domain-theoretic semantics

Now we turn to the issue of giving semantics to the programming and asser-
tion languages. Reus and Streicher took the view that the commands stored in
variables should be represented semantically as store transformers, that is, as
(partial) functions Store⇀ Store. But since stores map variables to values, and
values include commands, this makes the notions of command and store mutu-
ally recursive. Thus, [13] used domain theory to solve the following system of
recursive equations:

Store = Var→ Val Val = BVal + Cmd Cmd = Store⇀ Store

where BVal is some basic values such as integers.

2.3. Our new flat semantics

Instead of representing stored commands as functions mapping stores to
stores, in this paper we represent them simply as syntax; this is the key idea of
our model. Put another way, we use an intensional rather than an extensional
representation. In fact for convenience all values, including commands, are
encoded as integers. To this end we fix a bijection G mapping (syntactic)
commands to integers; we will use this to encode commands. Let Store ,
Var → Z be the set of program stores and let Env , AuxVar → Z be the set of
environments for auxiliary variables (throughout we use , to make definitions,
to avoid confusion with the assignment symbol := which occurs in programs).
We call our stores and environments flat because, unlike in the domain-theoretic
model [13], no complicated order structure on Store is required.

5

(x := e, s) −→ (nop, λv. if v = x then JeKex
s else s(v))

(C1, s) −→ (C ′1, s
′)

(C1;C2, s) −→ (C ′1;C2, s
′) (nop;C, s) −→ (C, s)

JeKex
s = 1

(if e then C1 else C2, s) −→ (C1, s)

JeKex
s 6= 1

(if e then C1 else C2, s) −→ (C2, s)

C = G−1(JeKex
s)

(run e, s) −→ (C, s)

(choose C1 C2, s) −→ (C1, s) (choose C1 C2, s) −→ (C2, s)

Figure 2: Small-step operational semantics of programs.

Semantics of expressions. We write JeKex
s,ρ for the value of expression e in store

s and environment ρ. Where e contains no ordinary (resp. auxiliary) variables
we omit s (resp. ρ). Expression evaluation is standard apart from the case of
‘C’~v=~e, where we use the encoding G , defining

J‘C’~v=~eKex
s,ρ ,

{
G (C[~v\J~eKex

s,ρ]) if mod(C) ∩ ~v = ∅
0 otherwise

(5)

(We cannot simply define J‘C’~v=~eKex
s,ρ , G (C[~v\J~eKex

s,ρ]) because in cases such as
‘x := y’x=3 the substitution does not produce a well-formed command.) As a
special case we have J‘C’Kex , G (C).

Semantics of programs. Fig. 2 gives a small-step operational semantics. A con-
figuration is a pair (C, s) of a command and a store, and is terminal if C is
nop. One execution step is written (C, s) −→ (C ′, s′) and if there is an execution

sequence of zero or more steps from (C, s) to (C ′, s′) we write (C, s)
∗−→ (C ′, s′).

Note the semantics of the run e command: we just evaluate expression e to an
integer value, turn it back into a (syntactic) command with G−1, and run it.

Semantics of assertions. Let PEnv , PVar→ P(Z+) be the set of environments
for predicate variables. The semantics JP Kas

ρ,χ ⊆ Store of assertion P in environ-
ment ρ and predicate environment χ is largely standard, and thus omitted. For
predicate uses P(e1, . . . , ek) we have

s ∈ JP(e1, . . . , ek)Kas
ρ,χ , (Je1Kex

s,ρ, . . . , JekK
ex
s,ρ) ∈ χ(P)

For a formula P containing no predicate variables, we simply write JP Kas
ρ . En-

tailment P ⇒ Q means that for all ρ and all χ, JP Kas
ρ,χ ⊆ JQKas

ρ,χ.

6

J∀~v. {P} C {Q}Ksp ,

(ρ, χ, n)

∣∣∣∣∣∣∣∣
either n = −1 or:
for all ρ′ agreeing with ρ
except possibly at ~v,
ρ′, χ �n {P} C {Q}

JP Ksp , {(ρ, χ) | JP Kas

ρ,χ = Store} × N−1

JS1, . . . , Sk ` SKsic ,
{

(ρ, χ)
∣∣∣ ∀n ∈ N, if (ρ, χ, n−1) ∈

⋂k
i=1JSiK

sp then (ρ, χ, n) ∈ JSKsp
}

Figure 3: Semantics of specifications and specifications in context.

Semantics of Hoare triples. The middle part C of a triple is interpreted to a set
of commands as follows:

JeKmid
ρ,χ , {G−1(JeKex

ρ)}

JP(·, e1, . . . , ek)Kmid
ρ,χ , {G−1(N) | (N, Je1Kex

ρ , . . . , JekK
ex
ρ)) ∈ χ(P)}

We use a partial correctness interpretation of Hoare triples as follows (where
the index n is the number of execution steps for which the Hoare triple holds).

Definition 2.1. Meaning of Hoare triples. We write ρ, χ �n {P} C {Q}
(where n ∈ N) to mean that for all C ∈ JCKmid

ρ,χ and all stores s ∈ JP Kas
ρ,χ, if

(C, s)
∗−→ (nop, s′) in n steps or fewer then s′ ∈ JQKas

ρ,χ.

Semantics of specifications. From now on we shall use N−1 as a shorthand for
N ∪ {−1}. The semantics JSKsp ⊆ Env × PEnv × N−1 of specification S, and
the semantics JΠKsic ⊆ Env × PEnv of specification in context Π, is then as in
Fig. 3. For example, {A} e {B} ` {P} e′ {Q} means that in a context where
command e satisfies triple {A} · {B} for executions of up to length n − 1, the
command e′ satisfies triple {P} · {Q} for executions of up to length n. This
semantics (which is not a conventional implication) will fit naturally with proof
by induction on execution length, which we will employ in the next section. We
lift the semantics J−Ksp from specifications to contexts Γ = S1, . . . , Sk using
intersection.

We write Π1, . . . ,Πk � Π to mean that (the conjunction of) specifications
in context Π1, . . . ,Πk entails the specification in context Π, that is, if JΠ1Ksic =
. . . = JΠkKsic = Env × PEnv then JΠKsic = Env × PEnv. (When k = 0 we write
just � S meaning JΠKsic = Env × PEnv.)

Remark 2.2. If (ρ, χ, n) ∈ JSKsp and −1 ≤ m < n then (ρ, χ,m) ∈ JSKsp.

3. Proof rules and their soundness

In this section we present a set of Hoare logic rules for reasoning about
higher order store programs. These rules include all those of [13], with some

7

A

{P [x\e]} ‘x := e’ {P}

S
Γ ` {P} ‘C1’ {R} Γ ` {R} ‘C2’ {Q}

Γ ` {P} ‘C1;C2’ {Q}

I
Γ ` {P ∧ e = 1} ‘C1’ {Q} Γ ` {P ∧ e 6= 1} ‘C2’ {Q}

Γ ` {P} ‘if e then C1 else C2’ {Q}

W
Γ ` {P ′} C {Q′}
Γ ` {P} C {Q}

P ⇒ P ′, Q′ ⇒ Q
ε

{P} ‘nop’ {P}

AddContext
Γ ` {P} C {Q}

Γ, S ` {P} C {Q}

Choose
Γ ` {P} ‘C1’ {Q} Γ ` {P} ‘C2’ {Q}

Γ ` {P} ‘choose C1 C2’ {Q}

Figure 4: Standard Hoare logic rules, supported by the logic we study.

useful generalisations and additions which we explain. We then provide simple
proofs of the rules’ soundness.

3.1. Meet the proof rules

We have split our proof rules into two groups: standard Hoare logic rules,
and rules for reasoning about the run statement which runs stored commands.
The standard rules for (A)ssignment, (S)equential composition, (W)eakening
(i.e. consequence) etc. are given in Fig. 4. (If these rule names are a little
cryptic, at least they are the same names as used in existing work [13, 16].) We
are explicit about the presence of a context Γ whereas in [13] this is left implicit.

Dealing with non-determinism. The (Choose) rule for non-deterministic choice
is our first new proof rule. The interest here is that, while our semantic model
easily handles non-determinism, the domain-theoretic model from [13] cannot.
The explanation given [3] is that in the presence of non-determinism, “programs
no longer denote ω-continuous functions”. Non-determinism is important be-
cause it arises naturally when one wishes to consider programs that use pointers
and a dynamically allocated heap. In such programs the memory allocation op-
eration in generally treated as non-deterministically choosing any unused heap
space to allocate.

The second group of rules, those concerning the running of stored commands
using run, is shown in Fig. 5. Rule (R) is used when we know the stored
command C which will be invoked, and have already derived a triple for it. Rule
(H) is for making use of contexts: in a context where {P ∧ x = p} p {Q} holds for
executions up to length n−1, {P ∧ x = p} ‘run x’ {Q} will hold for executions up
to length n. Rule (µ) is used for reasoning about mutual recursion (through the

8

R
Γ ` {P ∧ x = ‘C’} ‘C’ {Q}

Γ ` {P ∧ x = ‘C’} ‘run x’ {Q}

H

{P ∧ x = p} p {Q} ` {P ∧ x = p} ‘run x’ {Q}

µ∧
1≤i≤N

Γ, {P1} p1 {Q1} , . . . , {PN}pN {QN} ` {Pi} ‘Ci’ {Qi}∧
1≤i≤N

Γ `
{
Pi[~p\~C]

}
‘Ci’

{
Qi[~p\~C]

} p1, . . . , pN not free in Γ

~C is ‘C1’, . . . , ‘CN ’

~p is p1, . . . , pN

∀InstContext
Γ,∀~v. {P} C {Q} , ({P} C {Q})[~v\~e] ` S

Γ,∀~v. {P} C {Q} ` S
e contains no prog. vars

µDirect∧
1≤i≤N

Γ, {P1} ‘C1’ {Q1} , . . . , {PN} ‘CN ’ {QN} ` {Pi} ‘Ci’ {Qi}∧
1≤i≤N

Γ ` {Pi} ‘Ci’ {Qi}

HDirect

{P ∧ x = ‘C’} ‘C’ {Q} ` {P ∧ x = ‘C’} ‘run x’ {Q}

Figure 5: Hoare logic rules associated with the run statement which runs stored commands.

store): intuitively the premise says that if all commands Cj involved satisfy their
specifications {Pj} · {Qj} for executions up to length n−1, then each command
Ci also satisfies its specification for executions up to length n. Unsurprisingly
when we later prove soundness of (µ) we will use induction on n.

The (R), (H) and (µ) rules come from [13], but due to our flat store model,
we can make these rules simpler in two respects. Firstly, unintuitive side con-
ditions about downwards closure of assertions have been eliminated. Secondly
we simply use equality on commands, rather than a partial order ≤com.

The (∀InstContext) rule is for instantiating universal quantifiers over
Hoare triples in the context. Such quantification is left implicit in [13]; we
prefer to write the quantifiers and make explicit the rule for instantiating them.

The (µDirect) and (HDirect) rules, new in this paper, are “direct” ver-
sions of (µ) and (H). To explain the differences, as well as demonstrate all four

9

rules, we consider the program

x := ‘run x’; run x

We noted in the introduction that this is the simplest possible program that
uses recursion through the store. We shall prove that this program doesn’t
terminate, by showing

{true}x := ‘run x’; run x {false}

This reduces (using (A) and (S)) to showing

{x = ‘run x’} ‘run x’ {false} (6)

One way to show this is it use the following instance of (µ):

{x = p} p {false} ` {x = p} ‘run x’ {false}
{(x = p)[p\‘run x’]} ‘run x’ {false[p\‘run x’]}

The premise of this is trivially proved, being simply an instance of (H).
Note however that when using the (µ) rule we were forced into an “indirec-

tion”, introducing an auxiliary variable p to name the code stored in x. If we
instead use the (µDirect) and (HDirect) rules, this can be avoided: we can
instead obtain (6) from the following instance of (µDirect).

{x = ‘run x’} ‘run x’ {false} ` {x = ‘run x’} ‘run x’ {false}
{x = ‘run x’} ‘run x’ {false}

(7)

The premise of this is trivially proved, being an instance of (HDirect). In
this case the benefit of using (µDirect) instead of (µ) is minimal, but in more
complicated proofs it can be substantial.

The (µDirect) rule looks unusual; for instance, the premise of (7) has
the form A ` A which looks as though it should hold trivially. Indeed, in
the domain-theoretic model of [13] this is the case and (µDirect) cannot be
proved sound. But recall that in our model ` is not a conventional implication,
as the left and right sides talk about executions of different lengths. Thus
the availability of (µDirect) and (HDirect) is another bonus of our simpler
semantics.

Syntactic equality testing on commands. When programs can compare com-
mands for syntactic equality (or, in functional languages, α-equivalence), new
kinds of low-level programming and optimisation become available. Such syn-
tactic tests in minimal programming languages have been described as “a proxy
for the ability of machine code programs to compare code pointers for equal-
ity or to read executable instructions, Java programs to perform dynamic type
tests or use reflection, or programs in popular dynamic languages to do all sorts
of things” [17]. It is thus interesting to see that our flat model supports some
reasoning about such syntactic, or intensional, operations.

10

In the domain-theoretic model of [13], stored commands are represented as
semantic functions and information about their syntactic structure is thrown
away; thus syntactic equality cannot be expressed. But in our flat model, com-
mands are represented by their syntax (encoded as integers) so the standard
equality operator naturally expresses syntactic equality.

As an example, let Citer be the following higher order command.

if f = ‘nop’ then nop else
(
y := ‘if n = 0 then nop else (n := n−1 ; run f ; run y)’ ;
run y

)

Citer executes the command stored in f repeatedly, n times. But as an optimi-
sation, if the command in f is ‘nop’, it need not be run at all. With our proof
rules we can prove various behaviours for Citer , such as

{f = ‘nop’ ∧ P}Citer {P}

for the f = ‘nop’ case. For the f 6= ‘nop’ case we can prove that if the command
in f preserves invariant P and doesn’t interfere with variables f, n, y, then Citer

also preserves invariant P :

∀ f0,n0, y0.

P
∧ f = f0
∧ n = n0

∧ y = y0

 ‘C’

P
∧ f = f0
∧ n = n0

∧ y = y0

�
{f = ‘C’ ∧ f 6= ‘nop’ ∧ P}Citer {P}

3.2. Soundness of the proof rules

Having stated the proof rules, we must of course show that they are sound.
The standard rules (Fig. 4) are straightforward to prove so we omit the proofs.
In any case, most of these rules are special cases of rules we introduce later
(Section 5) to deal with runtime specialisation of code, so their soundness will
be established as a by-product of later proofs.

This leaves the rules for running stored commands. We prove soundness of
(H), (µ) and (µDirect); the proofs for (R) and (HDirect) are omitted as they
are very similar to the proof for (H), but simpler. We emphasise that our proof
of (µ) uses only the simple idea of induction on execution length, whereas the
existing proof [13] depends on results by Pitts [15] concerning the existence of
invariant relations on recursively defined domains.

Theorem 3.1. Rule (H) is sound.

Proof. Let ρ ∈ Env, χ ∈ PEnv, n ∈ N be such that (ρ, χ, n−1) ∈ J{P ∧ x = p}p {Q}Ksp).
We must prove ρ, χ �n {P ∧ x = p} ‘run x’ {Q}. If n = 0 then this is trivially

11

true, so let n > 0. Then from (ρ, χ, n−1) ∈ J{P ∧ x = p} p {Q}Ksp we get (A.)
ρ, χ �n−1 {P ∧ x = p} p {Q}.

Let s ∈ JP ∧ x=pKas
ρ,χ and s′ be such that (run x, s)

∗−→ (nop, s′) in n steps
or fewer; we are required to show s′ ∈ JQKas

ρ,χ. Due to the structure of the

transition relation −→, we must have (C, s)
∗−→ (nop, s′) in n−1 steps or fewer,

where C = G−1(s(x)). From this, s(x) = ρ(p) and (A.) we have s′ ∈ JQKas
ρ,χ as

required.

Theorem 3.2. Rule (µ) is sound.

Proof. Let Φ(n) be the statement that for all ρ ∈ Env, all χ ∈ PEnv and all
i ∈ {1, . . . , N},

(ρ, χ, n−1) ∈ JΓKsp implies ρ, χ �n {Pi[~p\~C]}‘Ci’{Qi[~p\~C]}

It will suffice to prove Φ(n) for all n ∈ N, which we shall do by induction.
Base case (n = 0): Let ρ ∈ Env, χ ∈ PEnv and let i ∈ {1, . . . , N} be such

that (ρ, χ,−1) ∈ JΓKsp. Let ρ̂ be equal to ρ except at p1, . . . ,pN , which are
mapped respectively to J‘C1’Kex, . . . , J‘CN ’Kex. Because (ρ, χ,−1) ∈ JΓKsp and
p1, . . . ,pN are not free in Γ, we have (ρ̂, χ,−1) ∈ JΓKsp. It follows from the
definition of J−Ksp that

(ρ, χ,−1) ∈ J{P1} p1 {Q1} , . . . , {PN} pN {QN}Ksp

Hence from the premise of (µ) we have ρ̂, χ �0 {Pi}‘Ci’{Qi}. Using familar
properties of substitution, this implies the thing we needed to prove, which is:
ρ, χ �0 {Pi[~p\~C]}‘Ci’{Qi[~p\~C]} .

Inductive case (n > 0): Let Φ(n − 1) hold. Let ρ ∈ Env and χ ∈ PEnv
be such that (ρ, χ, n−1) ∈ JΓKsp and let i ∈ {1, . . . , N}. Define ρ̂ as in the base

case. We must prove ρ, χ �n {Pi[~p\~C]}‘Ci’{Qi[~p\~C]} which is equivalent to

ρ̂, χ �n {Pi}‘Ci’{Qi} (8)

using familiar properties of substitution. Note that (ρ̂, χ, n−1) ∈ JΓKsp because
(ρ, χ, n−1) ∈ JΓKsp and p1, . . . ,pN are not free in Γ. We know that −1 ≤ n− 2
so it follows by Remark 2.2 that (ρ, χ, n−2) ∈ JΓKsp. It now follows from this
and the induction hypothesis Φ(n− 1), instantiating ρ with ρ̂, that

for all j ∈ {1, . . . , N}, ρ̂, χ �n−1 {Pj [~p\~C]}‘Cj ’{Qj [~p\~C]}

which in turn, using familiar properties of substitution, gives us

for all j ∈ {1, . . . , N}, ρ̂, χ �n−1 {Pj}pj{Qj}

From this it follows that:

(ρ̂, χ, n−1) ∈ J{P1} p1 {Q1} , . . . , {PN} pN {QN}Ksp (9)

From the premise of (µ), unpacking the definitions and instantiating n with n, ρ
with ρ̂ and χ with χ, we find that (8) follows from (9) and (ρ̂, n−1) ∈ JΓKsp.

12

f := ‘C1’ ; g := ‘C2’ ; run f

where

C1 ,
if (x× x) + (y × y) = (z × z)
then nop else run g

C2 ,
(if x = n then n := n+ 1;x := 0
else if y = n then x := x+ 1; y := 0
else if z = n then y := y + 1; z := 0
else z := z + 1) ;
run f

Figure 6: A program for finding Pythagorean triples, using recursion through the store.

Theorem 3.3. Rule (µDirect) is sound.

Proof. Let Φ(n) be the statement that for all ρ ∈ Env, all χ ∈ PEnv and all
i ∈ {1, . . . , N},

(ρ, χ, n−1) ∈ JΓKsp implies ρ, χ �n {Pi}‘Ci’{Qi}

It will suffice to prove Φ(n) for all n ∈ N, which we shall do by induction.
Base case (n = 0): Let ρ ∈ Env, χ ∈ PEnv and let i ∈ {1, . . . , N} be such

that (ρ, χ,−1) ∈ JΓKsp. It follows from the definition of J−Ksp that

(ρ, χ,−1) ∈ J{P1} ‘C1’ {Q1} , . . . , {PN} ‘CN ’ {QN}Ksp

Then from the premise of (µDirect), unpacking the definitions and instantiat-
ing n with 0, we immediately obtain ρ, χ �0 {Pi} ‘Ci’ {Qi} as required.

Inductive case (n > 0): Let Φ(n − 1) hold. Let ρ ∈ Env and χ ∈ PEnv
be such that (ρ, χ, n−1) ∈ JΓKsp and let i ∈ {1, . . . , N}. We must prove ρ, χ �n

{Pi}‘Ci’{Qi}. We know that −1 ≤ n − 2 and (ρ, χ, n−1) ∈ JΓKsp so it follows
by Remark 2.2 that (ρ, χ, n−2) ∈ JΓKsp. It now follows from the induction
hypothesis Φ(n− 1) that

for all j ∈ {1, . . . , N}, ρ, χ �n−1 {Pj}‘Cj ’{Qj}

Hence we have

(ρ, χ, n−1) ∈ JΓ, {P1} ‘C1’ {Q1} , . . . , {PN} ‘CN ’ {QN}Ksp

Then by the premise of (µDirect) it follows that (ρ, χ, n) ∈ J{Pi} ‘Ci’ {Qi}Ksp

whence ρ, χ �n {Pi}‘Ci’{Qi} as required.

4. An example of a modular proof

We now turn to the issue of modular proofs. In [13] the authors state that
their logic “is not modular as all code must be known in advance and must be
carried around in assertions”; they further state that it is “highly unlikely” that
a modular logic exists at all, ascribing this to the lack of a “Bekic lemma” for
their semantics. This belief is reiterated in later work, e.g. in [6]:

13

However, the formulation . . . has a shortcoming: code is treated like
any other data in that assertions can only mention concrete com-
mands. For modular reasoning, it is clearly desirable to abstract
from particular code and instead (partially) specify its behaviour.
For example, when verifying mutually recursive procedures on the
heap, one would like to consider each procedure in isolation, rely-
ing on properties but not the implementations of the others. The
recursion rule ... does not achieve this.

(10)

(From here on the word “modular” is meant in the sense described in this quote.)
Nevertheless, we now demonstrate using a simple program that modular proofs
are indeed possible.

Consider the example program in Fig. 6. This program searches for a
Pythagorean triple, that is, numbers x, y, z satisfying the predicate R(x, y, z) ,
x2 + y2 = z2, stopping when one is found. Note that we establish a mutual
recursion through the store between the C1 code (stored in f) and the C2 code
(stored in g). The C1 code tests whether the current values of variables x, y, z
form a Pythagorean triple and terminates if so; otherwise C1 runs the code in
g to continue the search. The C2 code updates x, y and z to the next triple to
try, before invoking the code in f to perform the next test. Let C0 be the main
program.

We would like to prove that this program works as intended, i.e. satifies

{true}C0 {R(x, y, z)} (11)

But we would also like our proof to be modular, as described in (10), so that
we do not have to completely redo our proof if we later change either C1 (e.g.
so that we search for values x, y, z with a different property) or C2 (e.g. so that
we exploit symmetry and only try triples where x ≤ y). We shall now see how
this can be accomplished. Let T (e) be the triple{

f = p ∧ g = q
}

e
{
R(x, y, z)

}
Then, we split our proof into three independent pieces.

For C1: Prove Π1 , � T (p), T (q) ` T (‘C1’)

For C2: Prove Π2 , � T (p), T (q) ` T (‘C2’)

For C0: Prove Π0 , Π1,Π2 � {true}C0 {R(x, y, z)}

Together, these three pieces trivially imply (11). We emphasise that in Π1 above
the concrete code for C2 does not appear, only a specification of its behaviour
(on the left of `), as described in (10). Similarly in Π2 the concrete code for C1

does not appear, only a specification of its behaviour on the left of `.

14

Proofs of Π0 and Π2 now follow (the proof of Π1 is deferred to Appendix B);
these proofs demonstrate the use of the (R), (H), and (µ) rules. Note that only
the proof for Π1 depends on the definition of predicate R.

Proof for Π0 piece. In full, the proof obligation Π0 is

Π1,Π2 � {true} f := ‘C1’ ; g := ‘C2’ ; run f {R(x, y, z)}

Standard Hoare logic reasoning for assignments and sequential composition re-
duces this obligation to

Π1,Π2 � {f = ‘C1’ ∧ g = ‘C2’} ‘run f ’ {R(x, y, z)}

By transitivity of � it is enough to show

Π1,Π2 � {f = ‘C1’ ∧ g = ‘C2’} ‘C1’ {R(x, y, z)} (12)

and
{f = ‘C1’ ∧ g = ‘C2’} ‘C1’ {R(x, y, z)}

� {f = ‘C1’ ∧ g = ‘C2’} ‘run f ’ {R(x, y, z)} (13)

(13) is easily seen to be an instance of rule (R). To deduce (12) we start with
the following instance of (µ)∧

i=1,2

T (p), T (q) ` T (‘Ci’)∧
i=1,2

{f = ‘C1’ ∧ g = ‘C2’} ‘Ci’ {R(x, y, z)}

If we use only the i = 1 part of the conclusion, we get

T (p), T (q) ` T (‘C1’) T (p), T (q) ` T (‘C2’)

{f = ‘C1’ ∧ g = ‘C2’} ‘C1’ {R(x, y, z)}

which is just (12) written in a different form.

Proof for Π2 piece. By the (AddContext) rule, Π2 will follow from T (p) `
T (‘C2’). By the (S) rule this will follow from

T (p) `
{
f = p ∧ g = q

} ‘if x = n then n := n+ 1;x := 0
else if y = n then x := x+ 1; y := 0
else if z = n then y := y + 1; z := 0
else z := z + 1’

{
f = p ∧ g = q

}

and
T (p) ` {f = p ∧ g = q} ‘run f ’ {R(x, y, z)}

The former is trivial since f and g are not updated; the latter is an instance of
the (H) rule.

15

Suppose we now replace our implementation C2 with another implementa-
tion Ĉ2, which tries the triples (x, y, z) in a different order. We can reuse our
existing proofs of Π1 and Π0; showing � T (p), T (q) ` T (‘Ĉ2’) is the only new
work12. This proof is modular in the same way that proofs about programs
with (fixed) recursive procedures can be made modular. Suppose, for instance,
one uses the rules of [18] to show correctness of a program with mutually recur-
sive procedures. If one then changes the body of one procedure, the verification
conditions for all other procedures stay the same, and their existing proofs can
be reused.

5. Proof rules for runtime code specialisation

In this section we discuss how to reason about programs which perform
runtime code generation. We focus on a simple form of runtime code generation,
namely the specialisation of code at runtime, which our language provides via
the specialising quote ‘C’~v=~e. In particular, we will see that the recursion rule
(µ) becomes inadequate in the presence of code specialisation at runtime, and
we will propose a more powerful recursion rule (µSets).

Recall that the specialising quote ‘C’~v=~e turns command C into a value, but
first replacing the variables ~v in C with the current values of the expressions ~e.

To see how the specialising quote might be used, let us consider an optimi-
sation3 to our program for finding Pythagorean triples from Section 4. When
trying a sequence of triples such as

(3, 4, 1), (3, 4, 2), (3, 4, 3) , . . . , (3, 4,m), . . .

our current program calculates the squares of 3 and 4 and sums them anew for
each triple in the sequence, which is wasteful. Our optimised program, shown
in Fig. 7, avoids this. Every time one of the variables x or y is updated, the
value of x2 + y2 is calculated and a piece of code specialised with this value is
stored in f .

This program is trickier to reason about than the non-optimised version.
In the next section we motivate and introduce further proof rules to support
convenient reasoning about such programs.

5.1. Meet some further proof rules

The first set of new rules we introduce appears in Fig. 8. These are for
reasoning about the execution of commands produced using the specialising

1Here we see why the lack of a “Bekic lemma” mentioned in [13] is not a problem. When

we change the implementation of C2 to Ĉ2, from the denotational viewpoint the application
of the (µ) rule inside the proof of Π0 just “recomputes” the joint fixed point of C1 and Ĉ2.

2Strictly, one might wish to explcitly put a universal quantification over R in proof obli-
gations Π2 and Π0. This would be easy to add, but for our present purposes we simply note
that the proofs of Π2 and Π0 do not rely on any properties of R, and thus will remain valid
proofs whatever the choice of R.

3This optimisation is for the purposes of illustration; we are not seriously trying to get an
efficient algorithm for finding Pythagorean triples.

16

f := ‘if m = (z × z) then nop else run g’m=(x×x)+(y×y) ;
g := ‘C2’ ;
run f

where

C2 ,
(if x = n then
n := n+ 1;x := 0 ;
f := ‘if m = (z × z) then nop else run g’m=(x×x)+(y×y)

else if y = n then
x := x+ 1; y := 0 ;
f := ‘if m = (z × z) then nop else run g’m=(x×x)+(y×y)

else if z = n then
y := y + 1; z := 0 ;
f := ‘if m = (z × z) then nop else run g’m=(x×x)+(y×y)

else z := z + 1) ;
run f

Figure 7: The program for finding Pythagorean triples, optimised using runtime code gener-
ation.

quote. Since the ordinary quote ‘C’ is a special case of the specialising quote
‘C’~v=~e, these rules (with the exception of (TrivialSpec)) are generalisations
of the standard Hoare rules in Fig. 4. The side conditions involving mod(−) are
present to ensure that the specialisations can take place properly (recall that in
Definition (5) we had to deal with cases such as ‘x := y’x=3 which, if allowed,
would not produce well-formed commands).

In addition to these rules, we must introduce a generalisation of the recursion
rule (µ). The reason is that the (µ) rule only allows one to consider a recursion
between finitely many commands C1, . . . , CN . Yet in our optimised example
program, there is a countable infinity of commands which could end up stored
in f , namely the set of all commands of the form

if m = (z × z) then nop else run g

where m is a sum of two squares.
Fig. 9 gives the (µSets) rule which we introduce to deal with such cases,

and several other associated rules. The main idea in (µSets) is that instead of
using variables p1, . . . ,pN to refer to single commands, we now use predicates
P1, . . . ,PN to refer to possibly infinite sets of commands. Each triple in the
context now describes the behaviour of a whole set of commands.

Shortly we will demonstrate these rules by applying them to the optimised
program of Fig. 7, but first we will prove the soundness of the new rules.

17

ASpec

{P [x\(e[~v\~e])]} ‘x := e’~v=~e {P}
x /∈ ~v

SSpec
Γ ` {P} ‘C1’~v=~e {R} Γ ` {R} ‘C2’~v=~e {Q}

Γ ` {P} ‘C1;C2’~v=~e {Q}
mod(C1, C2) ∩ ~v = ∅

ISpec
Γ ` {P ∧ (e[~v\~e]) = 1} ‘C1’~v=~e {Q} Γ ` {P ∧ (e[~v\~e]) 6= 1} ‘C2’~v=~e {Q}

Γ ` {P} ‘if e then C1 else C2’~v=~e {Q}
mod(C1, C2) ∩ ~v = ∅

ChooseSpec
Γ ` {P} ‘C1’~v=~e {Q} Γ ` {P} ‘C2’~v=~e {Q}

Γ ` {P} ‘choose C1 C2’~v=~e {Q}
mod(C1, C2) ∩ ~v = ∅

TrivialSpec
Γ ` {P} ‘C’ {Q}

Γ ` {P} ‘C’~v=~e {Q}
none of ~v appear in C

Figure 8: Hoare logic rules for reasoning about specialised commands.

5.2. Soundness of the proof rules

We first address the rules for reasoning about specialised commands (Fig. 8).
Here we give proofs for the (ASpec) and (SSpec) rules. The proof for (ISpec)
appears in Appendix A; proofs for the other two rules are easier and omitted.

Theorem 5.1. Rule (ASpec) is sound.

Proof. Suppose x /∈ ~v; we must prove � {P [x\(e[~v\~e])]} ‘x := e’~v=~e {P}. So let
ρ ∈ Env, χ ∈ PEnv and n ∈ N. We must prove

(ρ, χ, n) ∈ J{P [x\(e[~v\~e])]} ‘x := e’~v=~e {P}Ksp

which (since n cannot be −1) means we must show

ρ, χ �n {P [x\(e[~v\~e])]} ‘x := e’~v=~e {P}

Because x /∈ ~v we have

J‘x := e’~v=~eKex
ρ = G ((x := e)[~v\J~eKex

ρ])

= G (x := (e[~v\J~eKex
ρ]))

and hence

J‘x := e’~v=~eKmid
ρ,χ = {G−1(G (x := (e[~v\J~eKex

ρ])))}
= {x := (e[~v\J~eKex

ρ])}

18

µSets∧
1≤i≤N

Γ,∀~v1 {P1}P1(·, ~e1) {Q1} , . . . ,∀~vN {PN}PN (·, ~eN) {QN} ` {Pi}Pi(·, ~ei) {Qi}∧
1≤i≤N

Γ ` {Pi}Pi(·, ~ei) {Qi}

~vi is all auxiliary variables free in Pi, Qi, ~ei
No variable in ~v1, . . . ,~vN is free in Γ

HSets
P ⇒ P(e, e1, . . . , ek)

∀x1, . . . , xk. {P ∧ e1=x1 ∧ · · · ∧ ek=xk}P(·, x1, . . . , xk) {Q} ` {P} ‘run e’ {Q}
x1, . . . , xk fresh

RSets
P ⇒ P(e, e1, . . . , ek)

Γ ` {P ∧ e1=x1 ∧ · · · ∧ ek=xk}P(·, x1, . . . , xk) {Q}
Γ ` {P} ‘run e’ {Q}

x1, . . . , xk fresh

WWithContext
Γ, R ` {P ′} e {Q′}
Γ, R ` {P} e {Q}

P ∧R⇒ P ′, Q′ ∧R⇒ Q

IntroPredDef
R ` {P} e {Q}
{P} e {Q}

assertion R is satisfiable and has no free variables

P,Q contain no predicate symbols

UsePredDef
Γ ` {P} ‘C’~v=~e {Q}

Γ, ∀c∀~x.P(c,~x)⇔ c = ‘C’~v=~x ` {P}P(·, ~e) {Q}
mod(C) ∩ ~v = ∅

Figure 9: Hoare logic rules for reasoning about possibly infinite sets of commands.

So let s ∈ JP [x\(e[~v\~e])]Kas
ρ,χ be such that (x := (e[~v\J~eKex

ρ]), s)
∗−→ (nop, s′) in

n steps or fewer; it suffices to show s′ ∈ JP Kas
ρ,χ. Define c , Je[~v\~e]Kex

ρ . By
familiar properties of substitution we have s ∈ JP [x\c]Kas

ρ,χ. By the structure of
the transition relation, we know that s′ must be reached from s in one step, and

s′ = λv. if v = x then Je[~v\J~eKex
ρ]Kex

ρ else s(v)

which (because Je[~v\J~eKex
ρ]Kex

ρ = Je[~v\~e]Kex
ρ = c) is equal to

λv. if v = x then c else s(v)

From this and s ∈ JP [x\c]Kas
ρ,χ it follows by familiar properties of substitution

that s′ ∈ JP Kas
ρ,χ as required.

19

Theorem 5.2. Rule (SSpec) is sound.

Proof. Suppose that the premises and side condition of (SSpec) hold. We must
then show that the conclusion

� Γ ` {P} ‘C1;C2’~v=~e {Q}

holds. So let ρ ∈ Env, χ ∈ PEnv and n ∈ N be such that (ρ, χ, n−1) ∈ JΓKsp.
We must show

ρ, χ �n {P} ‘C1;C2’~v=~e {Q} (14)

From the side condition it follows that we are in the first case of the definition (5)
and thus

J‘C1;C2’~v=~eKex
ρ = G ((C1;C2)[~v\J~eKex

ρ]) = G ((C1[~v\J~eKex
ρ] ; C2[~v\J~eKex

ρ]))

Hence

J‘C1;C2’~v=~eKmid
ρ,χ = {G−1(G ((C1[~v\J~eKex

ρ] ; C2[~v\J~eKex
ρ])))}

= {C1[~v\J~eKex
ρ] ; C2[~v\J~eKex

ρ]}

From (ρ, χ, n−1) ∈ JΓKsp and the premises of (SSpec) we deduce that

ρ, χ �n {P} ‘C1’~v=~e {R} (15)

and
ρ, χ �n {R} ‘C2’~v=~e {Q} (16)

To prove (14), let

(C1[~v\J~eKex
ρ] ; C2[~v\J~eKex

ρ], s1) −→ · · · −→ (nop, sK)

be an execution sequence such that 1 < K ≤ n+ 1 (so the execution consists of
at most n steps) and s1 ∈ JP Kas

ρ,χ. This execution sequence must have the form

(C1[~v\J~eKex
ρ] ; C2[~v\J~eKex

ρ], s1)
−→ · · ·
−→ (nop;C2[~v\J~eKex

ρ], sJ)
−→ (C2[~v\J~eKex

ρ], sJ+1)
−→ · · ·
−→ (nop, sK)

where 1 ≤ J < K and sJ = sJ+1, and there must exist another execution
sequence, of J − 1 steps, of the form

(C1[~v\J~eKex
ρ], s1) −→ · · · −→ (nop, sJ)

By (15) and J‘C1’~v=~eKmid
ρ,χ = {C1[~v\J~eKex

ρ]} we see that sJ = sJ+1 ∈ JRKas
ρ,χ.

Then similarly applying (16) to the execution sequence

(C2[~v\J~eKex
ρ], sJ+1) −→ · · · −→ (nop, sK)

we obtain sK ∈ JQKas
ρ,χ as required.

20

Now we address the rules for reasoning about possibly infinite sets of com-
mands (Fig. 9). Here we focus on the proofs for the (µSets) and (HSets) rules.
The rules (UsePredDef), (IntroPredDef) and (RSets) are proved sound
in Appendix A; the proof for (WWithContext) is easier and omitted. The
proof for (µSets) is by induction on execution length, as was the proof for the
(µ) rule.

Theorem 5.3. Rule (µSets) is sound.

Proof. Let Φ(n) be the statement that for all ρ ∈ Env, all χ ∈ PEnv and all
i ∈ {1, . . . , N},

(ρ, χ, n−1) ∈ JΓKsp implies ρ, χ �n {Pi}Pi(·, ~ei){Qi}

It will suffice to prove Φ(n) for all n ∈ N, which we shall do by induction.
Base case (n = 0): Let ρ ∈ Env, χ ∈ PEnv and let i ∈ {1, . . . , N} be such

that (ρ, χ,−1) ∈ JΓKsp. It follows from the definition of J−Ksp that

(ρ, χ,−1) ∈ J∀~v1 {P1}P1(·, ~e1) {Q1} , . . . ,∀~vN {PN}PN (·, ~eN) {QN}Ksp

Then from the premise of (µDirect), unpacking the definitions and instantiat-
ing n with 0, we immediately obtain ρ, χ �0 {Pi}Pi(·, ~ei) {Qi} as required.

Inductive case (n > 0): Let Φ(n − 1) hold. Let ρ ∈ Env and χ ∈ PEnv
be such that (ρ, χ, n−1) ∈ JΓKsp and let i ∈ {1, . . . , N}. We must prove ρ, χ �n

{Pi}Pi(·, ~ei){Qi}. We know that −1 ≤ n−2 and (ρ, χ, n−1) ∈ JΓKsp so it follows
by Remark 2.2 that (ρ, χ, n−2) ∈ JΓKsp.
The next part of our argument is to show

(ρ, χ, n−1) ∈ J∀~v1 {P1}P1(·, ~e1) {Q1} , . . . ,∀~vN {PN}PN (·, ~eN) {QN}Ksp (17)

So let j ∈ {1, . . . , N} and we need to show (ρ, χ, n−1) ∈ J∀~vj {Pj}Pj(·, ~ej) {Qj}Ksp.
Let ρ̂ agree with ρ except possibly at ~vj ; then it will suffice to prove ρ̂, χ �n−1

{Pj}Pj(·, ~ej) {Qj}. Since variables ~vj do not appear free in Γ, we have (ρ̂, χ, n−2) ∈
JΓKsp. It then follows from the induction hypothesis Φ(n − 1) that ρ̂, χ �n−1

{Pj}Pj(·, ~ej){Qj} as required. Hence we have established (17).
Then by the premise of (µSets) it follows that (ρ, χ, n) ∈ J{Pi}Pi(·, ~ei) {Qi}Ksp

whence ρ, χ �n {Pi}Pi(·, ~ei){Qi} as required.

Theorem 5.4. Rule (HSets) is sound.

Proof. Let ρ ∈ Env, χ ∈ PEnv, n ∈ N be such that

(ρ, χ, n−1) ∈ J∀x1, . . . , xk. {P ∧ e1=x1 ∧ · · · ∧ ek=xk}P(·, x1, . . . , xk) {Q}Ksp)
(18)

We must prove ρ, χ �n {P} ‘run e’ {Q}. If n = 0 then this is trivially true, so

assume n > 0. Let s ∈ JP Kas
ρ,χ and s′ be such that (run e, s)

∗−→ (nop, s′) in n
steps or fewer; we are required to show s′ ∈ JQKas

ρ,χ.

21

Define environment ρ′ as follows:

ρ′(v) ,

{
JeiKex

s,ρ if v is xi

ρ(v) otherwise

From (18), n > 0 and the definition of ρ′ it follows that

ρ′, χ �n−1 {P ∧ e1=x1 ∧ · · · ∧ ek=xk}P(·, x1, . . . , xk) {Q} (19)

From s ∈ JP Kas
ρ,χ, the freshness of x1, . . . , xn and the definition of ρ′ we see that

s ∈ JP ∧ e1=x1 ∧ · · · ∧ ek=xkKas
ρ′,χ (20)

Define C , G−1(JeKex
s). From (20) and the premise P ⇒ P(e, e1, . . . , ek) we

have s ∈ JP(e, e1, . . . , ek)Kas
ρ′,χ, which means that

(JeKex
s , Jx1Kex

ρ′ , . . . , JxkK
ex
ρ′)) ∈ χ(P)

From this and C = G−1(JeKex
s) it follows that

C ∈ JP(·, x1, . . . , xk)Kmid
ρ′,χ (21)

Due to the structure of the transition relation −→, we must have (C, s)
∗−→

(nop, s′) in n−1 steps or fewer. Combining this with (19), (20) and (21) we find
that s′ ∈ JQKas

ρ′,χ. Because x1, . . . , xk do not appear in Q, we have s′ ∈ JQKas
ρ,χ

as required.

6. Proof of our program which uses runtime code specialisation

We now have all the rules required to show correctness of our optimised pro-
gram for finding Pythagorean triples (Fig. 7), which uses runtime specialisation
of code. In this section we sketch the correctness proof.

Let C0 be the main program. We shall prove:

{true}C0 {R(x, y, z)} (22)

We will use two predicates in our proof, Check(−,−) and Next(−). These cor-
respond to the two kinds of stored commands used by our program: commands
to check whether x, y, z is a Pythagorean triple, and commands to generate the
next triple to try. Let DefCheck and DefNext respectively be the following for-
mulae, which will function as our definitions of the Check and Next predicates.

∀c, x. Check(c, x) ⇔ c = ‘if m = (z × z) then nop else run g’m=x

∀c. Next(c) ⇔ c = ‘C2’

These formulae are trivially satisfiable and have no free variables so we can use
the IntroPredDef rule to reduce the proof obligation (22) to

DefCheck ,DefNext ` {true}C0 {R(x, y, z)}

22

This breaks down by sequential composition to showing three things:

DefCheck ,DefNext
`
{true} f := ‘if m = (z × z) then nop else run g’m=(x×x)+(y×y)

{
Check(f, x2 + y2)

}
(23)

DefCheck ,DefNext
` {

Check(f, x2 + y2)
}
g := ‘C2’

{
Check(f, x2 + y2) ∧Next(g)

} (24)

DefCheck ,DefNext
` {

Check(f, x2 + y2) ∧Next(g)
}
run f {R(x, y, z)}

(25)

Of these, (23) and (24) show that f and g are initialised with appropriate pieces
of (checking and generating) code. We prove them using a combination of the
assignment rule (A) and the (WWithContext) rule, which allows us to make
use of the predicate definitions DefCheck ,DefNext from the context while doing
consequence rule style reasoning. This leaves (25) which by (RSets) and (W)
will follow from:

DefCheck ,DefNext
` {

m = x2 + y2 ∧ Check(f,m) ∧Next(g)
}

Check(·,m) {R(x, y, z)}
(26)

In our earlier proof in Section 4, we used T (−) as a shorthand when writing our
behavioural specifications. In this proof we will use shorthand in a similar way:
this time we take TCheck and TNext to be the following triples.

TCheck ,

 Check(f, x2 + y2)
∧ Next(g)
∧ m = x2 + y2

 Check(·,m)
{
R(x, y, z)

}

TNext ,

{
Check(f, x2 + y2)
∧ Next(g)

}
Next(·)

{
R(x, y, z)

}
We now use the following instance of the (µSets) rule (where we afford ourselves
the liberty of writing multiple conclusions):

DefCheck ,DefNext ,∀m.TCheck, TNext ` TCheck, TNext

DefCheck ,DefNext ` TCheck, TNext

Thus to get (26) it is enough to prove

DefCheck , TNext ` TCheck (27)

23

and
DefCheck ,DefNext ,∀m.TCheck ` TNext (28)

First we shall prove (27) which, in full, is:

∀c, x. Check(c, x) ⇔ c = ‘if m = (z × z) then nop else run g’m=x,{
Check(f, x2 + y2) ∧Next(g)

}
Next(·) {R(x, y, z)}

`
{

Check(f, x2 + y2) ∧Next(g) ∧m = x2 + y2
}

Check(·,m) {R(x, y, z)}

Since m /∈ mod(if m = (z × z) then nop else run g), the (UsePredDef) rule
reduces this to:{

Check(f, x2 + y2) ∧Next(g)
}

Next(·) {R(x, y, z)}

`

 Check(f, x2 + y2)
∧ Next(g)
∧ m = x2 + y2

 ‘if m = (z × z) then nop else run g’m=m

{
R(x, y, z)

}
We next apply the (ISpec) rule, which we can do because m /∈ mod(nop, run g),
leaving us to prove{

Check(f, x2 + y2) ∧Next(g)
}

Next(·) {R(x, y, z)}

`

m = z × z
∧ Check(f, x2 + y2)
∧ Next(g)
∧ m = x2 + y2

 ‘nop’m=m

{
R(x, y, z)

}
and {

Check(f, x2 + y2) ∧Next(g)
}

Next(·) {R(x, y, z)}

`

m 6= z × z
∧ Check(f, x2 + y2)
∧ Next(g)
∧ m = x2 + y2

 ‘run g’m=m

{
R(x, y, z)

}

Using the (TrivialSpec) rule, along with (AddContext) and (W) to discard
some unneeded assumptions, these two obligations reduce to:{

m = z × z
∧ m = x2 + y2

}
nop

{
R(x, y, z)

}
and {

Check(f, x2 + y2) ∧Next(g)
}

Next(·) {R(x, y, z)}

`
{

Check(f, x2 + y2)
∧ Next(g)

}
run g

{
R(x, y, z)

}
The first of these is trivial; the second is an instance of the (HSets) rule because
Check(f, x2 + y2) ∧Next(g) ⇒ Next(g).

24

To finish we prove (28) which, in full, is:

∀c, x. Check(c, x) ⇔ c = ‘if m = (z × z) then nop else run g’m=x,

∀c. Next(c) ⇔ c = ‘C2’,

∀m.
{

Check(f, x2 + y2) ∧Next(g) ∧m = x2 + y2
}

Check(·,m) {R(x, y, z)}
`
{

Check(f, x2 + y2) ∧Next(g)
}

Next(·) {R(x, y, z)}

The (UsePredDef) rule reduces this to

∀c, x. Check(c, x) ⇔ c = ‘if m = (z × z) then nop else run g’m=x,

∀x.
{

Check(f, x2 + y2) ∧Next(g) ∧ x = x2 + y2
}

Check(·, x) {R(x, y, z)}
`
{

Check(f, x2 + y2) ∧Next(g)
}

‘C2’ {R(x, y, z)}

By (S) and (AddContext) it suffices to prove

∀c, x. Check(c, x) ⇔ c = ‘if m = (z × z) then nop else run g’m=x

`
{

Check(f, x2 + y2) ∧Next(g)
}
Ĉ
{

Check(f, x2 + y2) ∧Next(g)
} (29)

where Ĉ is the if-then-else cascade which makes up most of C2 in Fig. 7, and

∀x.
{

Check(f, x2 + y2) ∧Next(g) ∧ x = x2 + y2
}

Check(·, x) {R(x, y, z)}
`

{
Check(f, x2 + y2) ∧Next(g)

}
run f {R(x, y, z)}

(30)
The proof of (29) is easy; as in the proof of the first initialisation statement
(23), the (WWithContext) rule allows us to use the defining formula for
Check from the context.

To prove (30) we first use the (∀InstContext) and (AddContext) rules;
by these (30) will follow from{

Check(f, x2 + y2) ∧Next(g) ∧m = x2 + y2
}

Check(·,m) {R(x, y, z)}
`

{
Check(f, x2 + y2) ∧Next(g)

}
run f {R(x, y, z)}

and this is an instance of (RSets).

7. Related and future work

Our semantic model was partly inspired by a paper by von Oheimb [18],
which reports soundness proofs of rules for reasoning about mutually recursive
procedures. That paper uses operational semantics, and uses induction to prove
the recursion rules as we do. A minor difference is that our inductions are on
execution length whereas in [18] the number of calls made in an execution is
used. Similar induction arguments are also used for example by Parkinson [19] to
give a logic for Java. The fact that logics such as von Oheimb’s and Parkinson’s
support modular proofs is what led us to suspect that the logic we work with
should also support modular proofs (which we confirmed in Section 4).

25

The original paper by Reus and Streicher [13] spawned a line of follow-up
work [3, 5, 6, 20, 21, 22] addressing various aspects of reasoning about higher
order store programs using domain-theoretic semantics. Initially, [3, 5] studied
the application of the ideas of [13] to a programming language with a heap,
adding separation logic connectives [23] to the assertion language. As we re-
marked earlier, difficulties concerning the non-determinism of dynamic memory
allocation had to be overcome. Then, to address the perceived lack of modu-
larity of these logics, nested Hoare triples [6, 20] were added. However, these
nested triples lead to even greater theoretical complications: [6, 20] use Kripke
models based on recursively defined ultrametric spaces.

Hence, in the light of what we now know — that the logic of [13] can be
given a simple semantics, and already supports modular proofs — it will be
interesting to revisit [6, 20] and see whether there is anything which can be
accomplished using logics with nested triples, which cannot be supported using
a more conventional logic of the kind considered in this paper. The anti-frame
rule [24, 20] may be one such thing, but we cannot yet be sure.

We mention two other approaches to semantically justifying a logic with
nested Hoare triples. In [25], total rather than partial correctness is used, and
to reason about recursion the user of the logic must essentially perform an
induction argument “on foot” in their proofs ([25] was the first paper to give
a theory of nested triples, there named evaluation formulae). In [26] the step
indexing technique [27, 17] is used, where (unlike here) the interpretation of
assertions is also indexed by the length of the execution sequence. Step indexing
approaches are very similar in spirit to those based on ultrametric spaces, with
some small differences in the resulting logic [28, §6].

The research on higher order store mentioned above is theoretical in charac-
ter. Research by Jacobs, Smans and Piessens [29] on the verification of dynam-
ically loaded and unloaded kernel modules has a more applied flavour, as does
work by Cai, Shao and Vaynberg [30] on verifying self-modifying assembly code
and work by Charlton, Horsfall and Reus [31] on verifying dynamic software
updates. Overall, however, there has been little exploration of how the ideas of
higher order store can be put to work in the verification of real software pro-
grams. By its nature, of course, the question of practical applicability cannot
be resolved by further theoretical work, so research focused on applications is
needed.

Other future work is to adapt the ideas of Section 5 to other forms of runtime
code generation. For example, programs in JavaScript and Perl can build up
commands represented as source code strings at runtime, and then have these
parsed and run with a special eval operation.

7.1. An even simpler approach to higher order store?

In this paper we have made progress on the problem of providing a Hoare
logic with features designed to deal with higher order store. Yet this is not the
only possible approach to solving higher order store verification problems. We
conclude our discussion of related and future work by examining an alternative
method.

26

Suppose we are given a verification problem consisting of a higher order store
program P and a specification Φ of the behaviour P should have; our goal is to
prove P � Φ for some appropriate satisfaction relation �. The alternative idea
is to develop a translation P � Φ 7→ P ′ � Φ′ of verification problems such that:

1. the translated program P ′ uses no higher order store features, and

2. the translation is sound, i.e. P ′ � Φ′ implies P � Φ.

Once this is done, we can attack any higher order store verification problem
P � Φ by translating it to P ′ � Φ′ and then attempting to solve this translated
problem. Since P ′ does not use higher order store, we can attack P ′ � Φ′ with
the many “off the shelf” tools for automated software verification.

This approach is used successfully by Hayden et al. [32] for verifying dynamic
software updates. There, verification problems in which a program applies up-
dates to itself as it runs – a use of higher order store – are translated into
problems concerning a conventional procedural program, which uses ordinary
variables (integers and Booleans) to track which updates have been applied. The
translation used by Hayden et al. is easy to understand, preserves the structure
of programs and in fact gives P ′ � Φ′ iff P � Φ.

We believe it will be fruitful to apply this approach to other verification
problems of practical interest which (in one formulation) involve higher order
store.

8. Conclusions

We revisited the problem of providing a Hoare logic for a simple language for
higher order store programs. Firstly we presented a simpler semantic model of
the programming language, using flat states rather than domains. This model
leads to straightforward soundness proofs, yet gives rise to a more powerful logic.
We eliminated unintuitive restrictions on proof rules, and added some convenient
new rules. Additionally our model handles non-determinism and testing of
syntactic equality on commands. Secondly we explained and demonstrated with
an example that, contrary to what has been stated in the literature, the proof
system we work with does support modular proofs. Thirdly we extended the
programming language with an operator for runtime specialisation of code, and
gave rules for reasoning about this operator, including a new recursion rule. We
demonstrated these rules with an example.

Overall, our results show that, for certain kinds of reasoning about higher or-
der store, it is not necessary to use “sophisticated” domain-theoretic techniques,
and in fact one fares better without them.

Acknowledgements

The author acknowledges the support of EPSRC grant (EP/G003173/1)
“From Reasoning Principles for Function Pointers To Logics for Self-Configuring
Programs”.

27

References

[1] A. J. Ahmed, A. W. Appel, R. Virga, A stratified semantics of general
references, in: [33].

[2] J. Schwinghammer, A typed semantics of higher-order store and subtyping,
in: M. Coppo, E. Lodi, G. M. Pinna (Eds.), ICTCS, volume 3701 of Lecture
Notes in Computer Science, Springer, 2005, pp. 390–405.

[3] B. Reus, J. Schwinghammer, Separation logic for higher-order store, in:
Z. Ésik (Ed.), CSL, volume 4207 of Lecture Notes in Computer Science,
Springer, 2006, pp. 575–590.

[4] B. Reus, From reasoning principles for function pointers to logics for self-
configuring programs: case for support, 2008. Department of Informatics,
University of Sussex.

[5] L. Birkedal, B. Reus, J. Schwinghammer, H. Yang, A simple model of sep-
aration logic for higher-order store, in: L. Aceto, I. Damg̊ard, L. A. Gold-
berg, M. M. Halldórsson, A. Ingólfsdóttir, I. Walukiewicz (Eds.), ICALP
(2), volume 5126 of Lecture Notes in Computer Science, Springer, 2008,
pp. 348–360.

[6] J. Schwinghammer, L. Birkedal, B. Reus, H. Yang, Nested Hoare triples
and frame rules for higher-order store, in: E. Grädel, R. Kahle (Eds.),
CSL, volume 5771 of Lecture Notes in Computer Science, Springer, 2009,
pp. 440–454.

[7] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, I. Neamtiu, Mutatis mutandis:
Safe and predictable dynamic software updating, ACM Trans. Program.
Lang. Syst. 29 (2007).

[8] G. Bierman, M. Hicks, P. Sewell, G. Stoyle, Formalizing dynamic soft-
ware updating, in: 2nd International Workshop on Unanticipated Software
Evolution (USE 2003), pp. 13–23.

[9] D. Keppel, S. J. Eggers, R. R. Henry, A Case for Runtime Code Generation,
Technical Report UWCSE 91-11-04, University of Washington Department
of Computer Science and Engineering, 1991.

[10] M. Abadi, L. Cardelli, An imperative object calculus, in: P. D. Mosses,
M. Nielsen, M. I. Schwartzbach (Eds.), TAPSOFT, volume 915 of Lecture
Notes in Computer Science, Springer, 1995, pp. 471–485.

[11] C. A. R. Hoare, An axiomatic basis for computer programming, Commun.
ACM 12 (1969) 576–580.

[12] K. R. Apt, Ten years of Hoare’s logic: A survey - part I, ACM Trans.
Program. Lang. Syst. 3 (1981) 431–483.

28

[13] B. Reus, T. Streicher, About Hoare logics for higher-order store, in:
L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, M. Yung (Eds.),
ICALP, volume 3580 of Lecture Notes in Computer Science, Springer, 2005,
pp. 1337–1348.

[14] P. J. Landin, The mechanical evaluation of expressions, Computer Journal
6 (1964) 308–320.

[15] A. M. Pitts, Relational properties of domains, Inf. Comput. 127 (1996)
66–90.

[16] N. Charlton, Hoare logic for higher order store using simple semantics, in:
L. D. Beklemishev, R. de Queiroz (Eds.), WoLLIC, volume 6642 of Lecture
Notes in Computer Science, Springer, 2011, pp. 52–66.

[17] N. Benton, C.-K. Hur, Step-indexing: The good, the bad and the ugly,
in: A. Ahmed, N. Benton, L. Birkedal, M. Hofmann (Eds.), Modelling,
Controlling and Reasoning About State, number 10351 in Dagstuhl Semi-
nar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many, Dagstuhl, Germany, 2010.

[18] D. von Oheimb, Hoare logic for mutual recursion and local variables, in:
C. P. Rangan, V. Raman, R. Ramanujam (Eds.), FSTTCS, volume 1738
of Lecture Notes in Computer Science, Springer, 1999, pp. 168–180.

[19] M. J. Parkinson, Local reasoning for Java, Ph.D. thesis, University of Cam-
bridge, Computer Laboratory, 2005.

[20] J. Schwinghammer, H. Yang, L. Birkedal, F. Pottier, B. Reus, A semantic
foundation for hidden state, in: C.-H. L. Ong (Ed.), FOSSACS, volume
6014 of Lecture Notes in Computer Science, Springer, 2010, pp. 2–17.

[21] N. Charlton, B. Reus, Specification patterns and proofs for recursion
through the store, in: O. Owe, M. Steffen, J. A. Telle (Eds.), FCT, volume
6914 of Lecture Notes in Computer Science, Springer, 2011, pp. 310–321.

[22] N. Charlton, B. Horsfall, B. Reus, Crowfoot: A verifier for higher-order
store programs, in: V. Kuncak, A. Rybalchenko (Eds.), VMCAI, volume
7148 of Lecture Notes in Computer Science, Springer, 2012, pp. 136–151.

[23] J. C. Reynolds, Separation logic: A logic for shared mutable data struc-
tures, in: [33], pp. 55–74.

[24] F. Pottier, Hiding local state in direct style: A higher-order anti-frame
rule, in: LICS, IEEE Computer Society, 2008, pp. 331–340.

[25] K. Honda, N. Yoshida, M. Berger, An observationally complete program
logic for imperative higher-order functions, in: LICS, IEEE Computer
Society, 2005, pp. 270–279.

29

[26] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg,
H. Yang, Step-indexed kripke models over recursive worlds, in: T. Ball,
M. Sagiv (Eds.), POPL, ACM, 2011, pp. 119–132.

[27] A. W. Appel, D. A. McAllester, An indexed model of recursive types for
foundational proof-carrying code, ACM Trans. Program. Lang. Syst. 23
(2001) 657–683.

[28] J. Schwinghammer, L. Birkedal, B. Reus, H. Yang, Nested Hoare triples and
frame rules for higher-order store, Logical Methods in Computer Science 7
(2011).

[29] B. Jacobs, J. Smans, F. Piessens, Verification of unloadable modules, in:
M. Butler, W. Schulte (Eds.), FM, volume 6664 of Lecture Notes in Com-
puter Science, Springer, 2011, pp. 402–416.

[30] H. Cai, Z. Shao, A. Vaynberg, Certified self-modifying code, in: J. Ferrante,
K. S. McKinley (Eds.), PLDI, ACM, 2007, pp. 66–77.

[31] N. Charlton, B. Horsfall, B. Reus, Formal reasoning about runtime code
update, in: S. Abiteboul, K. Böhm, C. Koch, K.-L. Tan (Eds.), ICDE
Workshops, IEEE, 2011, pp. 134–138.

[32] C. M. Hayden, S. Magill, M. Hicks, N. Foster, J. S. Foster, Specifying
and verifying the correctness of dynamic software updates, in: R. Joshi,
P. Müller, A. Podelski (Eds.), VSTTE, volume 7152 of Lecture Notes in
Computer Science, Springer, 2012, pp. 278–293.

[33] 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25
July 2002, Copenhagen, Denmark, Proceedings, IEEE Computer Society,
2002.

Appendix A. Further soundness proofs

Theorem Appendix A.1. Rule (ISpec) is sound.

Proof. Suppose that the premises and side condition of (ISpec) hold. We must
then show that the conclusion

Γ ` {P} ‘if e then C1 else C2’~v=~e {Q}

holds. So let ρ ∈ Env, χ ∈ PEnv and n ∈ N be such that (ρ, χ, n−1) ∈ JΓKsp.
We must show

ρ, χ �n {P} ‘if e then C1 else C2’~v=~e {Q} (A.1)

From the side condition it follows that mod(if e then C1 else C2)∩ ~v = ∅, so we
are in the first case of Definition (5) and thus

J‘if e then C1 else C2’~v=~eKex
ρ = G ((if e then C1 else C2)[~v\J~eKex

ρ])

= G (if e[~v\J~eKex
ρ] then (C1[~v\J~eKex

ρ]) else (C2[~v\J~eKex
ρ]))

30

It then follows that

J‘if e then C1 else C2’~v=~eKmid
ρ,χ = {G−1(G (if e[~v\J~eKex

ρ] then (C1[~v\J~eKex
ρ]) else (C2[~v\J~eKex

ρ])))}
= {if e[~v\J~eKex

ρ] then (C1[~v\J~eKex
ρ]) else (C2[~v\J~eKex

ρ])}

So let s ∈ JP Kas
ρ,χ be such that

(if e[~v\J~eKex
ρ] then (C1[~v\J~eKex

ρ]) else (C2[~v\J~eKex
ρ]), s)

∗−→ (nop, s′)

in n steps or fewer; to prove (A.1) it suffices to show that s′ ∈ JQKas
ρ,χ. By the

structure of the transition relation, there are two possibilities:

1. Je[~v\J~eKex
ρ]Kex

s = 1 and (C1[~v\J~eKex
ρ], s)

∗−→ (nop, s′) in n− 1 steps or fewer.

2. Je[~v\J~eKex
ρ]Kex

s 6= 1 and (C2[~v\J~eKex
ρ], s)

∗−→ (nop, s′) in n− 1 steps or fewer.

We will only do the proof for case 1 because that for case 2 is very similar.
So suppose Je[~v\J~eKex

ρ]Kex
s = 1. It follows from this by familiar properties of

substitution that Je[~v\~e]Kex
s,ρ = 1. From this and s ∈ JP Kas

ρ,χ it follows that
s ∈ JP ∧ (e[~v\~e]) = 1Kas

ρ,χ.
Our plan is now to use the first premise of (Is). To do this, we note that

J‘C1’~v=~eKmid
ρ,χ = {G−1(J‘C1’~v=~eKex

ρ)} = {G−1(G (C1[~v\J~eKex
ρ]))} = {C1[~v\J~eKex

ρ]}

Combining this with conditions we have already checked, namely:

� (ρ, χ, n−1) ∈ JΓKsp

� (C1[~v\J~eKex
ρ], s)

∗−→ (nop, s′) in n− 1 steps or fewer

� s ∈ JP ∧ (e[~v\~e]) = 1Kas
ρ,χ

we find that s′ ∈ JQKas
ρ,χ as required.

Theorem Appendix A.2. Rule (IntroPredDef) is sound.

Proof. Suppose the premise R ` {P} e {Q} and side-conditions hold; we must
prove � {P} e {Q}. So let ρ ∈ Env, χ ∈ PEnv and n ∈ N. We must prove
(ρ, χ, n) ∈ J{P} e {Q}Ksp. The assertion R is satisfiable so there exist ρ̂ ∈
Env, χ̂ ∈ PEnv and s ∈ Store such that s ∈ JRKas

ρ,χ. But R cannot contain
free program variables, so in fact JRKas

ρ̂,χ̂ = Store. Because R contains no free
auxiliary variables either, it follows that JRKas

ρ,χ̂ = Store. This means that
(ρ, χ̂, n−1) ∈ JRKsp. From this and the rule’s premise it follows that (ρ, χ̂, n) ∈
J{P} e {Q}Ksp. From this it follows that (ρ, χ, n) ∈ J{P} e {Q}Ksp as required,
because P,Q contain no predicate symbols so it does not matter if we use χ
instead of χ̂.

Theorem Appendix A.3. Rule (UsePredDef) is sound.

31

Proof. Suppose the premise

Γ ` {P} ‘C’~v=~e {Q}

and side-condition hold; we must prove

Γ, ∀c∀~x.P(c,~x)⇔ c = ‘C’~v=~x ` {P}P(·, ~e) {Q}

So let ρ ∈ Env, χ ∈ PEnv, n ∈ N be such that

(ρ, χ, n−1) ∈ JΓ, ∀c∀~x.P(c,~x)⇔ c = ‘C’~v=~xKsp (A.2)

We must prove
(ρ, χ, n) ∈ J{P}P(·, ~e) {Q}Ksp

So let C ′ ∈ JP(·, ~e)Kmid
ρ,χ , and let s ∈ JP Kas

ρ,χ be such that (C ′, s)
∗−→ (nop, s′) in n

steps or fewer. We must prove s′ ∈ JQKas
ρ,χ.

It follows from C ′ ∈ JP(·, ~e)Kmid
ρ,χ that there exists N ∈ N such that C ′ =

G−1(N) and (N, J~eKex
ρ) ∈ χ(P) (where we lifted J−Kex

− to sequences of expres-
sions). From (A.2) it follows that

J∀c∀~x.P(c,~x)⇔ c = ‘C’~v=~xKas
ρ,χ = Store (A.3)

We define ρ̂ to be equal to ρ except that c is mapped to N and the variables ~x
are mapped to values J~eKex

ρ . From (A.3) and the definition of ρ̂ we have

JP(c,~x)⇔ c = ‘C’~v=~xKas
ρ̂,χ = Store

But ρ̂ is also constructed to ensure

JP(c,~x)Kas
ρ̂,χ = Store

so JcKex
ρ̂ = J‘C’~v=~xKex

ρ̂ . But JcKex
ρ̂ = N , so J‘C’~v=~xKex

ρ̂ = N . Thus (since

mod(C) ∩ ~v = ∅) we have G (C[~v\J~xKex
ρ̂]) = N . But C ′ = G−1(N) so in fact

C ′ = C[~v\J~xKex
ρ̂]. By the definition of ρ̂ we have J~xKex

ρ̂ = J~eKex
ρ , and hence

C ′ = C[~v\J~eKex
ρ].

Now we use the premise of (UsePredDef). We know (ρ, χ, n−1) ∈ JΓKsp

so it follows that (ρ, χ, n) ∈ J{P} ‘C’~v=~e {Q}Ksp from which we have

ρ, χ �n {P} ‘C’~v=~e {Q} (A.4)

Now
J‘C’~v=~eKmid

ρ,χ = {G−1(J‘C’~v=~eKex
ρ)} = {C[~v\J~eKex

ρ]} = C ′

Combining this with (A.4) we can easily show that s′ ∈ JQKas
ρ,χ as required.

Theorem Appendix A.4. Rule (RSets) is sound.

32

Proof. Let ρ ∈ Env, χ ∈ PEnv, n ∈ N be such that (ρ, χ, n−1) ∈ JΓKsp. We must
prove ρ, χ �n {P} ‘run e’ {Q}. If n = 0 then this is trivially true, so let n > 0.
Define ρ′ as follows:

ρ′(v) ,

{
JeiKex

s,ρ if v is xi

ρ(v) otherwise

By this, the freshness of x1, . . . , xk and (ρ, χ, n−1) ∈ JΓKsp we have (ρ′, χ, n−1) ∈
JΓKsp. From this, the rule’s second premise and Remark (2.2) we have

ρ′, χ �n−1 {P ∧ e1=x1 ∧ · · · ∧ ek=xk}P(·, x1, . . . , xk) {Q} (A.5)

Let s ∈ JP Kas
ρ,χ and s′ be such that (run e, s)

∗−→ (nop, s′) in n steps or fewer; we
are required to show s′ ∈ JQKas

ρ,χ. From s ∈ JP Kas
ρ,χ and the definition of ρ′ it

follows that
s ∈ JP ∧ e1=x1 ∧ · · · ∧ ek=xkKas

ρ′,χ (A.6)

Define C , G−1(JeKex
s). From s ∈ JP Kas

ρ,χ and the premise P ⇒ P(e, e1, . . . , ek)
we have s ∈ JP(e, e1, . . . , ek)Kas

ρ,χ, which means that

(JeKex
s , Je1Kex

s,ρ, . . . , Je1Kex
s,ρ)) ∈ χ(P)

By this and the definition of ρ′ we have

(JeKex
s , Jx1Kex

ρ′ , . . . , Jx1Kex
ρ′)) ∈ χ(P)

From this and C = G−1(JeKex
s) it follows that

C ∈ JP(·, x1, . . . , xk)Kmid
ρ′,χ (A.7)

Due to the structure of the transition relation −→, we must have (C, s)
∗−→

(nop, s′) in n−1 steps or fewer. Combining this with (A.5), (A.6) and (A.7)
we find that s′ ∈ JQKas

ρ′,χ. Because x1, . . . , xk do not appear in Q, we have
s′ ∈ JQKas

ρ,χ as required.

Appendix B. Proof for Π1

Proof. By the (AddContext) rule it will suffice to show T (q) ` T (‘C1’) i.e.

T (q) `
{
f = p ∧ g = q

} ‘if (x× x) + (y × y) = (z × z)
then nop
else run g’

{
R(x, y, z)

}
Using the (I) rule it will be enough to show

T (q) `

 f = p
∧ g = q
∧ ((x× x) + (y × y) = (z × z)) = 1

 ‘nop’
{
R(x, y, z)

}
(B.1)

33

and

T (q) `

 f = p
∧ g = q
∧ ((x× x) + (y × y) = (z × z)) 6= 1

 ‘run g’
{
R(x, y, z)

}
(B.2)

(B.1) is easily proved using the definition of R(x, y, z) as x2 + y2 = z2 and the
equivalence (e1=e2) = 1⇔ e1 = e2. We deduce (B.2) by the (W) rule from the
following instance of (H):

T (q) ` {f = p ∧ g = q} ‘run g’ {R(x, y, z)}

34

