A deeper understanding
of the deep frame axiom

(frame rules for higher order store)

Billiejoe (Nathaniel) Charlton and Bernhard Reus

University of Sussex

Setting the scene

A Higher order store means that mutable state, such as the heap, can be use
store code/commands/procedures

Setting the scene

A Higher order store means that mutable state, such as the heap, can be use
store code/commands/procedures

A Languages with higher order store can serve as a foundation to model e.g.
-Re8YIYAO f2FRAY3IZI NHzy 0 AYS -@adRyBgcadey

Setting the scene

A Higher order store means that mutable state, such as the heap, can be use
store code/commands/procedures

A Languages with higher order store can serve as a foundation to model e.g.
-Re8YIYAO f2FRAY3IZI NHzy 0 AYS -@adRyBgcadey

A We are interested in logical reasoning for such languages
- we use separation logic (a variant of Hoare logic)

Setting the scene

A Higher order store means that mutable state, such as the heap, can be use
store code/commands/procedures

A Languages with higher order store can serve as a foundation to model e.g.
-Re8YIYAO f2FRAY3IZI NHzy 0 AYS -@adRyBgcadey

A We are interested in logical reasoning for such languages
- we use separation logic (a variant of Hoare logic)

A Particularly interested ihidden state

Hidden state

A How can we reason about hidden state effectively and soundly?

How to reason about invocation ofragher order procedure
when one of the arguments ispgiocedure with its own state

A Hidden state is really great: it leadsrteodular programs and modular proofs
-.dz AGQa faz GNROleée (2 NBlazy |

0

A program featuring hidden state

written in a minimal language with higher order store

let runlt = new ‘Af. eval[f]()’ in

let f1 = new ‘skip’ in

let ctr = new O in

let fo = new ‘[ctr] := [ctr] + 17 in
eval [runlt](f2) ;

free ctr ;

eval [runit|(f1)

A program featuring hidden state

written in a minimal language with higher order store

let runlt = new ‘Af. eval[f]()’ in

let f1 = new ‘skip’ in

let ctr = new O in

let fo = new ‘[ctr] := [ctr] + 17 in
eval [runlt](f2) ;

/ free cir ;
eval [runit|(f1)

Thectrecell This program is completely
Ada aKARRSY safec it cannot crash.
aul 0dSce

in this call

Can we prove this?

Problem considered In this talk

A How can we reason about hidden state effectively and soundly?

A A logical axiom, called tHeeep Frame Axionhas been previously proposed
for reasoning about hidden state (Schwinghammer et al (CSL, 2008))

- at first glance, appears to be natural and exactly what we need

Problem considered In this talk

A How can we reason about hidden state effectively and soundly?

A A logical axiom, called tHeeep Frame Axionhas been previously proposed
for reasoning about hidden state (Schwinghammer et al (CSL, 2008))

- at first glance, appears to be natural and exactly what we need

- We can use it to prove correctness of a crashing program

Problem considered In this talk

A How can we reason about hidden state effectively and soundly?

A A logical axiom, called tHeeep Frame Axionhas been previously proposed
for reasoning about hidden state (Schwinghammer et al (CSL, 2008))

- at first glance, appears to be natural and exactly what we need
- We can use it to prove correctness of a crashing program

SOLUTION:
A Propose a sound specification idiom which we can use instead
- using second order logic (quantification over assertions)

Nested Hoare triples

We can reason about higher order store using a logic metsted triples based
on Schwinghammer et al, CSL, 200®r example, consider our code famit:

Af.eval|f]()

This code can be specified by a Hoare triple:

{ £ {emp} - () {emp} }
vf. (f)
{ £ {emp} () {emp} }

The code is higher order so pnd postconditions contain Hoare triples.

{emp}

let runlt = new ‘Af. eval[f]()” in

let f1 = new ‘skip’ in

let ctr = new O in

let fo = new ‘[ctr] := [ctr] 4+ 17 in
eval [runlt](fz2) ;

free ctr ;

eval [runlt](f1)

{ True }

{ fr—{emp} - () {emp} }
Af. eval|f]()

[emp }/{ f = {emp} - () {emp} }

let runlt = new ‘Af. eval|f

let f1 = new ‘skip’ in

let ctr = new O in

let fo = new ‘[ctr] := [ctr] 4+ 17 in
eval [runlt](fz2) ;
free ctr ;

eval [runlt](f1)

{ True }

{ fr{emp} - () {emp} }
runlt — Y. (f)

{ fro{emp} - () {emp} }

let f1 = new ‘skip’ in
let ctr = new O In

let fo = new [ctr] := [ctr] + 1" in
eval [runlt|(f2) ;
free ctr ;

eval [runit|(f1)

{ True }

N

/

' { fr{emp} - () {emp} } °
< runilt — V. (f) b

k { f—={emp} - () {emp} } |

let f1 = new ‘skip’ in< {emp} skip {emp}
let ctr = new 0 in
let fo = new ‘[ctr] := [ctr] + 1" in

eval [runlt|(f2) ;

free ctr ;

eval [runit|(f1)

{ True }

' { fr={Aemp} -() {emp} } °
runlt — Y. (f)

{ f+ {emp} - () {emp} }
|« f1 > {emp} () {emp} ,

let ctr = new O in

let fo = new ‘[ctr] := [ctr] 4+ 17 in
eval [runlt](fz2) ;
free ctr ;

eval [runlt](f1)

{ True }

' { fr{emp} - () {emp} } °
runlt — Y. (f)
< { 1= {emp} - () {emp} }
* f1+— {emp} - () {emp}
| xctr— 0)
let fo = new ‘[ctr] := [ctr] 4+ 17 in
eval [runlt](fz2) ;
free ctr ;

eval [runlt](f1)

{ True }

’ { f{emp} - () femp} }
runlt — Y f. (f)
< { /o {emp} -() {emp} } [
x f1 {Smp} - () {emp}
| x Cir — ,

let fo = new ‘[ctr] := [ctr] 4+ 17 in
eval [runlt](fz2) ; {octris_)

free ctr ; _
eval [runlt](f1) [Cff] ILZ ctr] —}I}— 1
ctr — _

{ True }

' { f—{emp} -() {emp} } °
runlt — Y f. -(f)

< { [~ {emp} - () {emp} }
* f1+— {emp} - () {emp}
* ctr — 0

x fors {etr—_} - () {ctr— _})

eval [runlit|(f2) ;
free ctr ;

eval [runit|(f1)

{ True }

’ { f—{emp} -() {emp} })
runlt — Y f. -(f)

4 { f—{emp} -() {emp} } \
* f1+— {emp} - () {emp}

*x ctr +— 0
| xfar {etr o} () {etr o) ,
eval [runlt](f2) ; Now we have a mismatdh
free ctr ; because the code inunit
eval [runilt](f1) R2SayQd 1y2é6
counter cell.

{ True } What can we do??

G5SSLIE FNIF YAY:

We introduce an operatorxX) for adding invariants to specifications:

P & [means, informally, add to every peasd postcondition
in P, at all nesting levels.

G5SSLIE FNIF YAY:

We introduce an operatorxX) for adding invariants to specifications:

P & [means, informally, add to every peasd postcondition
in P, at all nesting levels.

=0 { [{emp} -() {emp} }
vf. (f) & ctr — _

{ f—{emp} - () {emp} }

G5SSLIE FNIF YAY:

We introduce an operatorxX) for adding invariants to specifications:

P & [means, informally, add to every peasd postcondition
in P, at all nesting levels.

o { £ {emp} - () {emp} }
vf. (f) & ctr — _
{ £ {emp} - () {emp} }
means
{ f— {empxctr— _} - () {emp *ctr — _} xctr — _ }
Vf. -(f)
{ f {empx*ctr— _} - () {emp xctr — _} *ctr — _ }

Deep Frame Axiom and Rule

Two mechanism®r adding invariants to specificatiomgere considered by
Schwinghammer et al (CSL, 2008)

DEEP FRAME RULE DEEP FRAME AXIOM
P P = PRI

P®I1

Deep Frame Axiom and Rule

Two mechanisms faxdding invariants to specificatiomgere considered by
Schwinghammer et al (CSL, 2008)

DEEP FRAME RULE DEEP FRAME AXIOM
P P = PxI
P I

TheDeep Frame Rulean add invariants to a specification
- but only at the top level of the proof

Deep Frame Axiom and Rule

Two mechanism®r adding invariants to specificatiomgere considered by
Schwinghammer et al (CSL, 2008)

DEEP FRAME RULE DEEP FRAME AXIOM
P P = PxI
P I

TheDeep Frame Rulean add invariants to a specification
- but only at the top level of the proof

TheDeep Frame Axions stronger
- can also be used inside p@nd postconditions of triples

\

{ fr{emp} - () {emp} } °

runlt — Vf. (f)

{ fr{emp} - () {emp} } |

* f1+— {emp} - () {emp}
* ctr — 0
x fa = {ctr— _} - () {ctr — _}

eval [runlt|(f2) ;
free ctr ;

eval [runit|(f1)

{ True }

Here is our mismatch again.

[SGQa dzaS (KS
Axiom to add cf{r — _

as an invariant

to the specification forrunit

\

. { f{ctr— 2 () {ctr— Jxctr—_)

runlt — V. (f)
{ f={ctr—_1} -0 {ctr— }xctr—_}

\
* f1+ {emp} - () {emp}
* ctr — 0
* fo { ctr — _} . () {Ctﬁ" — —} -

\

eval [runlt|(fz2) ;
free ctr ;

eval [’mn[t] (f1) Now we can reason

about the call and we
{ True } are happyd

The Deep Frame Axiom Is unsound

A2 SQUS 2dzai asSSy o¢Kée ¢S glyiad 0KS 5.
- unfortunately it is not sound; only the weaker rule version is sound

The Deep Frame Axiom Is unsound

A2 SQUS 2dzai asSSy o¢Kée ¢S glyiad 0KS 5.
- unfortunately it is not sound; only the weaker rule version is sound

A Because we can hide state, when doing a proof we might already have
hidden some state to get the precondition!
- Soin generalthe codeiunlit Y @ KI @S | O0OS&aa (2 K
know about

The Deep Frame Axiom Is unsound

A2 SQUS 2dzai asSSy o¢Kée ¢S glyiad 0KS 5.
- unfortunately it is not sound; only the weaker rule version is sound

A Because we can hide state, when doing a proof we might already have
hidden some state to get the precondition!

- Soin generalthe codeiunlit Y @ KI @S | O0OS&aa (2 K
know about

Alf therunt O2 RS O2LASa a2dziaARS¢é O2RS A
wrong:
- The program will crash
- But we can still prove it correct using the Deep Frame Axiom

let hidden = new ‘skip’ in

let runlt = new ‘\f . eval|hidden|() ; |hidden] := [f] in

let f1 = new ‘skip’ in

let ctr = new 0 in

let fo = new ‘[ctr] := [ctr] 4+ 17 in
eval [runlt](f2) ;
free ctr ;

eval [runlt](f1)

{emp}

let hidden = new ‘skip’ in

let runlt = new ‘Af . evallhidden|() ; |hidden] := [f] in

let f1 = new ‘skip’ in

let ctr = new 0 in

let fo = new ‘[ctr] := [ctr] 4+ 17 in
eval [runlt](f2) ;
free ctr ;

eval [runit](f1)
{ True }

{ emp }
let hidden = new ‘skip’ in
let runlt = new ‘Af . evallhidden|() ; |hidden| := [f] in

r { fr—{emp} - () {emp} }

{ fr{emp} - () {emp} }

*x hidden — - - -

\
let f1 = new ‘skip’ in
let ctr = new O in
let fo = new ‘[ctr] := [ctr] + 17 in
eval [runlt|(f2) ;
free ctr ;

eval [runit|(f1)
{ True }

runlt — Vf. (f) R hidden —s - - -

{emp}

let hidden = new ‘skip’ in

let runlt = new ‘Af . evallhidden|() ; |hidden] := [f] in
’ { fr={emp} -() {emp} } }

runlt — Yf. (f)

\ { [{emp} - () {emp} }

let f1 = new ‘skip’ in
let ctr = new 0 In

N

let fo = new ‘[ctr] := [ctr] 4+ 17 in
eval [runlt](f2) ;
free ctr ;

eval [runit](f1)
{ True }

{emp}

let hidden = new ‘skip’ in

let runlt = new ‘Af . evallhidden|() ; |hidden] := [f] in

" { fr{emp} - () {emp} }
runlt — Y. (f)

\ { fr={emp} - () {emp} }

let f1 = new ‘skip’ in

N

let ctr = new O In Obviously this is bad
let fo = new ‘[ctr] := [ctr] 4+ 17 in we seem to need the
' Deep Frame Axiom but
eval [runlt|(f2) ; it is unsound.
free ctr ;
eval [runit](f1) How to resolve the

{ True } problem?

Proposed solution

A2 SQ@S aSSy (¢2 MO SYSY Gl adAzya T2
- one where adding invariants in axiom style is safe, another where it is not

Proposed solution

A2 SQ@S aSSy (¢2 MO SYSY Gl adAzya T2
- one where adding invariants in axiom style is safe, another where it is not

A Thus,whether or not it is safe to add invariants must become part of the
specificatioragreed between therunlt code and its clients.

Proposed solution

A2 SQ@S aSSy (¢2 MO SYSY Gl adAzya T2
- one where adding invariants in axiom style is safe, another where it is not

A Thus,whether or not it is safe to add invariants must become part of the
specificatioragreed between therunlt code and its clients.

A This can be expressed easily using second order logic:
{ f{emp} - () {emp} }
VX.Vf. (f) ® X
{ f—{emp} - () {emp} }

Proposed solution

A2 SQ@S aSSy (¢2 MO SYSY Gl adAzya T2
- one where adding invariants in axiom style is safe, another where it is not

A Thus whether or not it is safe to add invariants must become part of the
specificatioragreed between therunlt code and its clients.

A This can be expressed easily using second order logic:

{ fr{emp} - () {emp} }
vX. V. (f) ® X

{ f = {emp} - () {emp} }

A With this idiom we can prove the correct program, but not the faulty dne

" { f {emp} - () {emp} }
{ runlt — VX. VY. (f) ® X

\ { £ {emp} - () {emp} }

let f1 = new ‘skip’ in
let ctr = new O In

let fo = new ‘[ctr] := [ctr] 4+ 17 in
eval [runlt|(f2) ;
free ctr ; We can easily prove this;
eval [’mnlt](fl) just instantiate X with
COl =

{ Lrue } when you need td

Remarks

A Commands specified with7 X . - - - & X may still have hidden state
- and they may still use that hidden state for storing code

Remarks

A Commands specified with7 X . - - - & X may still have hidden state
- and they may still use that hidden state for storing code

A Copying outside code into hidden staeems to be what is ruled out
- We would like to be able to be more precise about this

Remarks

A Commands specified with7 X . - - - & X may still have hidden state
- and they may still use that hidden state for storing code

A Copying outside code into hidden staeems to be what is ruled out
- We would like to be able to be more precise about this

A In proofs we have done so far, using the/ X. - - - ® X specifica
RARY QO 3ISYSNIGS YdzOK SEGNYI 62 NJ
- We would like to be more precise about this too

The end

Remarks

E.g. for the implementation ofunlt KA OK R2Say Qu dzaS K
VX.:--® X comes for free via the DFR:

{ £ {emp} - () {emp} }
Vf. Af. eval|f]()
{ f = {emp} - () {emp} }

{ fro{emp} - () {emp} }
Vf. (Af. eval[f]()) ® X
{ fr{emp} - () {emp} }

({ fr—{emp} - () {emp} })
VX.Vf. Af. eval|f]() ® X

{ frAemp} - () {emp} }

DFR

Generalisation

let hidden = new ‘skip’ in
let runlt = new ‘Af . evallhidden|() ; |hidden] := [f]’ in
let ctr = new O in
let f1 = new ‘skip’ in
let fo = new ‘|ctr| := [ctr] + 17 in
eval [runlt](fz2) ;
lctr] :=0 ;
eval [runlt](f1) ;
if [ctr] # 0 then abort else skip

ex= O0|1|...]et4+e]| ... |z]|N.C

C:= lety=J[e]inC|[e1] :=ex|letx =new €in C |freee

| eval [€](@)
| skip | C1;Cs | if e; = eg then C else C5

Absolutely the end

