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Hidden state 

ÅHow can we reason about hidden state effectively and soundly? 

 

  How to reason about invocation of a higher order procedure 

  when one of the arguments is a procedure with its own state 

 

ÅHidden state is really great: it leads to modular programs and modular proofs 

 - .ǳǘ ƛǘΩǎ ŀƭǎƻ ǘǊƛŎƪȅ ǘƻ ǊŜŀǎƻƴ ŀōƻǳǘ ŎƻǊǊŜŎǘƭȅ 



A program featuring hidden state 
written in a minimal language with higher order store 



This program is completely 
safe ς it cannot crash. 
 
Can we prove this? 

A program featuring hidden state 
written in a minimal language with higher order store 

The ctr cell 
ƛǎ άƘƛŘŘŜƴ 
ǎǘŀǘŜέ 
in this call 
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SOLUTION: 

ÅPropose a sound specification idiom which we can use instead 

 - using second order logic (quantification over assertions) 

 



Nested Hoare triples 

We can reason about higher order store using a logic with nested triples, based 
on Schwinghammer et al, CSL, 2008.  For example, consider our code for  runIt: 

 

 

 

This code can be specified by a Hoare triple: 

 

 

 

 

 

The code is higher order so pre- and post-conditions contain Hoare triples. 



















Now we have a mismatch L 
because the code in runIt 
ŘƻŜǎƴΩǘ ƪƴƻǿ ŀōƻǳǘ ǘƘŜ 
counter cell. 
 
What can we do?? 
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The Deep Frame Rule can add invariants to a specification 

 - but only at the top level of the proof 

 

The Deep Frame Axiom is stronger 

- can also be used inside pre- and post-conditions of triples 



Here is our mismatch again. 
 
[ŜǘΩǎ ǳǎŜ ǘƘŜ 5ŜŜǇ CǊŀƳŜ 
Axiom to add 
as an invariant 
to the specification for  runIt 



Now we can reason 
about the call and we 
are happy J 
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ÅIf  the  runIt  ŎƻŘŜ ŎƻǇƛŜǎ άƻǳǘǎƛŘŜέ ŎƻŘŜ ƛƴǘƻ ǘƘŜ ƘƛŘŘŜƴ ŎŜƭƭǎΣ ǘƘƛƴƎǎ Ŏŀƴ Ǝƻ 
wrong: 

 - The program will crash 

 - But we can still prove it correct using the Deep Frame Axiom 



CRASH! 









Obviously this is bad ς 
we seem to need the 
Deep Frame Axiom but 
it is unsound. 
 
How to resolve the 
problem? 
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ÅWith this idiom we can prove the correct program, but not the faulty one J 

 



We can easily prove this; 
just instantiate  X  with 
 
 
when you need to J 
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ÅCopying outside code into hidden state seems to be what is ruled out 

  - We would like to be able to be more precise about this 

 

ÅIn proofs we have done so far,  using the                                         specification 
ŘƛŘƴΩǘ ƎŜƴŜǊŀǘŜ ƳǳŎƘ ŜȄǘǊŀ ǿƻǊƪ 

  - We would like to be more precise about this too 



The end 



Remarks 

E.g. for the implementation of  runIt  ǿƘƛŎƘ ŘƻŜǎƴΩǘ ǳǎŜ ƘƛŘŘŜƴ ǎǘŀǘŜΣ ǘƘŜ ŜȄǘǊŀ 

                                   comes for free via the DFR: 







Absolutely the end 


