
A deeper understanding
of the deep frame axiom

(frame rules for higher order store)

Billiejoe (Nathaniel) Charlton and Bernhard Reus

University of Sussex

Setting the scene

ÅHigher order store means that mutable state, such as the heap, can be used to
store code/commands/procedures

Setting the scene

ÅHigher order store means that mutable state, such as the heap, can be used to
store code/commands/procedures

ÅLanguages with higher order store can serve as a foundation to model e.g.

 - ŘȅƴŀƳƛŎ ƭƻŀŘƛƴƎΣ ǊǳƴǘƛƳŜ ŎƻŘŜ ƎŜƴŜǊŀǘƛƻƴΣ άƘƻǘ ǳǇŘŀǘŜέΣ ǎŜƭŦ-modifying code

Setting the scene

ÅHigher order store means that mutable state, such as the heap, can be used to
store code/commands/procedures

ÅLanguages with higher order store can serve as a foundation to model e.g.

 - ŘȅƴŀƳƛŎ ƭƻŀŘƛƴƎΣ ǊǳƴǘƛƳŜ ŎƻŘŜ ƎŜƴŜǊŀǘƛƻƴΣ άƘƻǘ ǳǇŘŀǘŜέΣ ǎŜƭŦ-modifying code

ÅWe are interested in logical reasoning for such languages

 - we use separation logic (a variant of Hoare logic)

Setting the scene

ÅHigher order store means that mutable state, such as the heap, can be used to
store code/commands/procedures

ÅLanguages with higher order store can serve as a foundation to model e.g.

 - ŘȅƴŀƳƛŎ ƭƻŀŘƛƴƎΣ ǊǳƴǘƛƳŜ ŎƻŘŜ ƎŜƴŜǊŀǘƛƻƴΣ άƘƻǘ ǳǇŘŀǘŜέΣ ǎŜƭŦ-modifying code

ÅWe are interested in logical reasoning for such languages

 - we use separation logic (a variant of Hoare logic)

ÅParticularly interested in hidden state

Hidden state

ÅHow can we reason about hidden state effectively and soundly?

 How to reason about invocation of a higher order procedure

 when one of the arguments is a procedure with its own state

ÅHidden state is really great: it leads to modular programs and modular proofs

 - .ǳǘ ƛǘΩǎ ŀƭǎƻ ǘǊƛŎƪȅ ǘƻ ǊŜŀǎƻƴ ŀōƻǳǘ ŎƻǊǊŜŎǘƭȅ

A program featuring hidden state
written in a minimal language with higher order store

This program is completely
safe ς it cannot crash.

Can we prove this?

A program featuring hidden state
written in a minimal language with higher order store

The ctr cell
ƛǎ άƘƛŘŘŜƴ
ǎǘŀǘŜέ
in this call

Problem considered in this talk

PROBLEM:

ÅHow can we reason about hidden state effectively and soundly?

ÅA logical axiom, called the Deep Frame Axiom, has been previously proposed
for reasoning about hidden state (Schwinghammer et al (CSL, 2008))

 - at first glance, appears to be natural and exactly what we need

Problem considered in this talk

PROBLEM:

ÅHow can we reason about hidden state effectively and soundly?

ÅA logical axiom, called the Deep Frame Axiom, has been previously proposed
for reasoning about hidden state (Schwinghammer et al (CSL, 2008))

 - at first glance, appears to be natural and exactly what we need

Å¦ƴŦƻǊǘǳƴŀǘŜƭȅ ƛǘ ƛǎƴΩǘ ǎƻǳƴŘΗ

 - we can use it to prove correctness of a crashing program

Problem considered in this talk

PROBLEM:

ÅHow can we reason about hidden state effectively and soundly?

ÅA logical axiom, called the Deep Frame Axiom, has been previously proposed
for reasoning about hidden state (Schwinghammer et al (CSL, 2008))

 - at first glance, appears to be natural and exactly what we need

Å¦ƴŦƻǊǘǳƴŀǘŜƭȅ ƛǘ ƛǎƴΩǘ ǎƻǳƴŘΗ

 - we can use it to prove correctness of a crashing program

SOLUTION:

ÅPropose a sound specification idiom which we can use instead

 - using second order logic (quantification over assertions)

Nested Hoare triples

We can reason about higher order store using a logic with nested triples, based
on Schwinghammer et al, CSL, 2008. For example, consider our code for runIt:

This code can be specified by a Hoare triple:

The code is higher order so pre- and post-conditions contain Hoare triples.

Now we have a mismatch L
because the code in runIt
ŘƻŜǎƴΩǘ ƪƴƻǿ ŀōƻǳǘ ǘƘŜ
counter cell.

What can we do??

ά5ŜŜǇέ ŦǊŀƳƛƴƎ

We introduce an operator for adding invariants to specifications:

 means, informally, add to every pre- and post-condition
 in P, at all nesting levels.

ά5ŜŜǇέ ŦǊŀƳƛƴƎ

We introduce an operator for adding invariants to specifications:

 means, informally, add to every pre- and post-condition
 in P, at all nesting levels.

E.g.

ά5ŜŜǇέ ŦǊŀƳƛƴƎ

We introduce an operator for adding invariants to specifications:

 means, informally, add to every pre- and post-condition
 in P, at all nesting levels.

E.g.

means

Deep Frame Axiom and Rule

Two mechanisms for adding invariants to specifications were considered by
Schwinghammer et al (CSL, 2008)

Deep Frame Axiom and Rule

Two mechanisms for adding invariants to specifications were considered by
Schwinghammer et al (CSL, 2008)

The Deep Frame Rule can add invariants to a specification

 - but only at the top level of the proof

Deep Frame Axiom and Rule

Two mechanisms for adding invariants to specifications were considered by
Schwinghammer et al (CSL, 2008)

The Deep Frame Rule can add invariants to a specification

 - but only at the top level of the proof

The Deep Frame Axiom is stronger

- can also be used inside pre- and post-conditions of triples

Here is our mismatch again.

[ŜǘΩǎ ǳǎŜ ǘƘŜ 5ŜŜǇ CǊŀƳŜ
Axiom to add
as an invariant
to the specification for runIt

Now we can reason
about the call and we
are happy J

The Deep Frame Axiom is unsound

Å²ŜΩǾŜ Ƨǳǎǘ ǎŜŜƴ ǿƘȅ ǿŜ ǿŀƴǘ ǘƘŜ 5ŜŜǇ CǊŀƳŜ !ȄƛƻƳ

 - unfortunately it is not sound; only the weaker rule version is sound

The Deep Frame Axiom is unsound

Å²ŜΩǾŜ Ƨǳǎǘ ǎŜŜƴ ǿƘȅ ǿŜ ǿŀƴǘ ǘƘŜ 5ŜŜǇ CǊŀƳŜ !ȄƛƻƳ

 - unfortunately it is not sound; only the weaker rule version is sound

ÅBecause we can hide state, when doing a proof we might already have
hidden some state to get the precondition!

 - So in general the code in runIt Ƴŀȅ ƘŀǾŜ ŀŎŎŜǎǎ ǘƻ ƘŜŀǇ ŎŜƭƭǎ ǿŜ ŘƻƴΩǘ
know about

The Deep Frame Axiom is unsound

Å²ŜΩǾŜ Ƨǳǎǘ ǎŜŜƴ ǿƘȅ ǿŜ ǿŀƴǘ ǘƘŜ 5ŜŜǇ CǊŀƳŜ !ȄƛƻƳ

 - unfortunately it is not sound; only the weaker rule version is sound

ÅBecause we can hide state, when doing a proof we might already have
hidden some state to get the precondition!

 - So in general the code in runIt Ƴŀȅ ƘŀǾŜ ŀŎŎŜǎǎ ǘƻ ƘŜŀǇ ŎŜƭƭǎ ǿŜ ŘƻƴΩǘ
know about

ÅIf the runIt ŎƻŘŜ ŎƻǇƛŜǎ άƻǳǘǎƛŘŜέ ŎƻŘŜ ƛƴǘƻ ǘƘŜ ƘƛŘŘŜƴ ŎŜƭƭǎΣ ǘƘƛƴƎǎ Ŏŀƴ Ǝƻ
wrong:

 - The program will crash

 - But we can still prove it correct using the Deep Frame Axiom

CRASH!

Obviously this is bad ς
we seem to need the
Deep Frame Axiom but
it is unsound.

How to resolve the
problem?

Proposed solution

Å²ŜΩǾŜ ǎŜŜƴ ǘǿƻ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴǎ ŦƻǊ runIt:

 - one where adding invariants in axiom style is safe, another where it is not

Proposed solution

Å²ŜΩǾŜ ǎŜŜƴ ǘǿƻ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴǎ ŦƻǊ runIt:

 - one where adding invariants in axiom style is safe, another where it is not

ÅThus, whether or not it is safe to add invariants must become part of the
specification agreed between the runIt code and its clients.

Proposed solution

Å²ŜΩǾŜ ǎŜŜƴ ǘǿƻ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴǎ ŦƻǊ runIt:

 - one where adding invariants in axiom style is safe, another where it is not

ÅThus, whether or not it is safe to add invariants must become part of the
specification agreed between the runIt code and its clients.

ÅThis can be expressed easily using second order logic:

Proposed solution

Å²ŜΩǾŜ ǎŜŜƴ ǘǿƻ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴǎ ŦƻǊ runIt:

 - one where adding invariants in axiom style is safe, another where it is not

ÅThus, whether or not it is safe to add invariants must become part of the
specification agreed between the runIt code and its clients.

ÅThis can be expressed easily using second order logic:

ÅWith this idiom we can prove the correct program, but not the faulty one J

We can easily prove this;
just instantiate X with

when you need to J

Remarks

ÅCommands specified with may still have hidden state

 - and they may still use that hidden state for storing code

Remarks

ÅCommands specified with may still have hidden state

 - and they may still use that hidden state for storing code

ÅCopying outside code into hidden state seems to be what is ruled out

 - We would like to be able to be more precise about this

Remarks

ÅCommands specified with may still have hidden state

 - and they may still use that hidden state for storing code

ÅCopying outside code into hidden state seems to be what is ruled out

 - We would like to be able to be more precise about this

ÅIn proofs we have done so far, using the specification
ŘƛŘƴΩǘ ƎŜƴŜǊŀǘŜ ƳǳŎƘ ŜȄǘǊŀ ǿƻǊƪ

 - We would like to be more precise about this too

The end

Remarks

E.g. for the implementation of runIt ǿƘƛŎƘ ŘƻŜǎƴΩǘ ǳǎŜ ƘƛŘŘŜƴ ǎǘŀǘŜΣ ǘƘŜ ŜȄǘǊŀ

 comes for free via the DFR:

Absolutely the end

